
Recitation 12

Dynamic Programming

12.1 Announcements

• Midterm 2 is on Friday.

65

66 RECITATION 12. DYNAMIC PROGRAMMING

12.2 Can We Solve SSSP With Dynamic Programming?

Task 12.1. Let δ(v, k) be the shortest path distance between the source and v using at
most k edges. For the example graph shown, fill in the table below with values δ(v, k)
using 0 as the source. If a vertex v is unreachable from the source using at most k edges,
then write δ(v, k) =∞.

0

1

2

3

1

8

4

1

7

v
0 1 2 3

k

0
1
2
3

Task 12.2. What are the values δ(v, 0) for every v?

Task 12.3. Write δ(v, k) in terms of δ(·, k − 1). (Intuition: if we know shortest path
distances using at most k − 1 edges, can we easily calculate all shortest path distances
which use at most k edges? We only need to extend each shortest path by one edge.)

Task 12.4. Assuming the graph contains no negative cycles, prove the following state-
ment:

For each vertex, there exists a shortest path to it from the source using at
most |V | − 1 edges.

What does this statement tell us about using δ(v, k) to solve the SSSP problem?

Task 12.5. Using what’s been established above, write a top-down dynamic program-
ming solution to the SSSP problem. Note that your result will essentially be a top-down
version of the well-known Bellman-Ford algorithm.

Built: April 4, 2016

12.2. CAN WE SOLVE SSSP WITH DYNAMIC PROGRAMMING? 67

12.2.1 Cost Analysis

Task 12.6. Describe the DAG of dependencies between subproblems δ(v, k); i.e., each
vertex is a pair (v, k), and there is an arc from (v′, k′) to (v, k) if we need to know the
value δ(v′, k′) in order to calculate δ(v, k).

Draw the dependency DAG for the example graph given above.

Task 12.7. Identify a bottom-up ordering of the Bellman-Ford DAG which maximizes
parallelism while respecting subproblem dependencies. Use this bottom-up ordering to
determine the work and span of Bellman-Ford in terms of n, the number of vertices, and
m, the number of edges. You may assume constant-time access to subproblems you have
already computed.

12.2.2 Is Bellman-Ford A Useful Algorithm?

Task 12.8. Recall that the work bound of Dijkstra’s algorithm as presented in class was
O(m log n). For certain priority queue implementations, this can be reduced even to
O(m + n log n). Bellman-Ford is clearly much slower. In what situations might you
want to use Bellman-Ford instead of Dijkstra’s algorithm?

Task 12.9. Describe a simple modification to Bellman-Ford’s algorithm which can be
used to detect the presence of a negative cycle.

Task 12.10. Describe an optimization for Bellman-Ford which (assuming there are no
negative cycles) causes it terminate after ` rounds, where ` is the maximum number of
edges used in any of the shortest paths.

Built: April 4, 2016

68 RECITATION 12. DYNAMIC PROGRAMMING

.

Built: April 4, 2016

	Dynamic Programming
	Announcements
	Can We Solve SSSP With Dynamic Programming?
	Cost Analysis
	Is Bellman-Ford A Useful Algorithm?

