Recitation 8

Augmented Tables

8.1 Announcements

- RangeLab has been released, and is due Friday afternoon.
- BridgeLab will be released on Friday. It's not due for two weeks, so enjoy your spring break!

8.2 Interval Checking

Suppose you're given a set of intervals $I \subset \mathbb{Z} \times \mathbb{Z}$ and some $k \in \mathbb{Z}$, and you're interested in determining whether or not there exists $(l, r) \in I$ such that $l<k<r$. For simplicity, let's assume that no two intervals share an endpoint.

Task 8.1. Implement a function

```
    val intervalCheck : (int * int) Seq.t }->\mathrm{ int }->\mathrm{ bool
```

where (intervalCheck $I k$) answers the query mentioned above. Your function must be staged such that the line
val q = intervalCheck I
performs $O(|I| \log |I|)$ work and $O\left(\log ^{2}|I|\right)$ span, while each subsequent call $q(k)$ only performs $O(\log |I|)$ work and span. Try solving this problem with augmented tables.

We'll store each (l, r) in a table as $(l \mapsto r)$, and augment the table with the function max. This allows us to determine the rightmost endpoint of a set of intervals in constant time. To answer the query, we can split I at k to get a set I^{\prime} of all intervals which begin before k. We then just need to check if any of these have endpoints which are greater than k.

```
Algorithm 8.2. Interval Checking with Augmented Tables.
structure Val =
struct
    type t = int
    val f = Int.max
    val I = -\infty
    val toString = Int.toString
end
structure Table = MkTreapAugTable (structure Key = IntElt
                            structure Val = Val)
fun intervalCheck I =
    let
        val T = Table.fromSeq I
        fun query }k
            let val (T',_,_) = Table.split (T,k)
            in ( }|\mp@subsup{T}{}{\prime}|>0)\wedge(\mathrm{ Table.reduceVal T T > k)
            end
    in
        query
    end
```


8.3 Interval Counting

Now suppose you want to solve a more general problem. Given I and k, you want to return $|\{(l, r) \in I \mid l<k<r\}|$. Once again, for simplicity, we'll assume all endpoints are distinct.

Task 8.3. Implement a function

```
val intervalCount : (int * int) Seq.t }->\mathrm{ int }->\mathrm{ int
```

where (intervalCheck $I \quad k$) answers the interval counting query as mentioned above. Your function must be staged, just like Task 8.1.

Similar to parentheses matching, we can use a counter which "increments" at the beginning of each interval, and "decrements" at the end. This corresponds to building a table of $(l \mapsto 1)$ and $(r \mapsto-1)$ for each interval (l, r), and augmenting the table with addition. After splitting this table at k, we can determine the number of "unmatched" intervals on the left in $O(1)$ time.

We have to be careful about off-by-one errors, though: if an interval ends at k, we need to subtract 1 . This is handled on line 19 below.

```
Algorithm 8.4. Interval Counting with Augmented Tables.
    structure Val =
    struct
        type t = int
        val f =op+
        val I = 0
        val toString = Int.toString
    end
    structure Table = MkTreapAugTable (structure Key = IntElt
                                structure Val = Val)
    fun intervalCount I=
    let
        val L = Seq.map (fn (l,_) => (l,1)) I
        val }R=\operatorname{Seq.map}(\mathbf{fn}(_,r)=>(r,-1)) 
        val T = Table.fromSeq (Seq.append (L,R))
        fun query }k
                let val ( }\mp@subsup{T}{}{\prime},co,_) = Table.split (T,k
                    val c = case co of SOME -1 # -1 |_ # 0
                in Table.reduceVal }\mp@subsup{T}{}{\prime}+
                end
    in
        query
    end
```

