Recitation 8

Augmented Tables

8.1 Announcements

- RangeLab has been released, and is due Friday afternoon.
- *BridgeLab* will be released on Friday. It's not due for two weeks, so enjoy your spring break!

8.2 Interval Checking

Suppose you're given a set of intervals $I \subset \mathbb{Z} \times \mathbb{Z}$ and some $k \in \mathbb{Z}$, and you're interested in determining whether or not there exists $(l,r) \in I$ such that l < k < r. For simplicity, let's assume that no two intervals share an endpoint.

Task 8.1. Implement a function

val intervalCheck : (int * int) Seq.t \rightarrow int \rightarrow bool

where (intervalCheck I k) answers the query mentioned above. Your function must be staged such that the line

 $\mathbf{val} \ q = intervalCheck \ I$

performs $O(|I| \log |I|)$ work and $O(\log^2 |I|)$ span, while each subsequent call q(k) only performs $O(\log |I|)$ work and span. Try solving this problem with augmented tables.

8.3 Interval Counting

Now suppose you want to solve a more general problem. Given I and k, you want to return $|\{(l,r) \in I \mid l < k < r\}|$. Once again, for simplicity, we'll assume all endpoints are distinct.

Task 8.2. Implement a function

val intervalCount : (int * int) Seq.t \rightarrow int \rightarrow int

where (intervalCheck I k) answers the interval counting query as mentioned above. Your function must be staged, just like Task 8.1.

Built: February 29, 2016