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(Dynamic Programming) Pipe Cutting 18
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Question 1: Short Answers (30 points)
Please answer the following questions each with a few sentences, or a short snippet of code
(either pseudocode or SML).

(a) (4 points) Consider an undirected graph G with unique positive weights. Suppose it has a
minimum spanning tree T . If we square all the edge weights and compute the MST again,
do we still get the same tree structure? Explain briefly.

Solution: Yes we get the same tree. The minimum spanning tree only depends on
the ordering among the edges. This is because the only thing we do with edges is
compare them.

(b) (5 points) Lets say you are given a table that maps every student to the set of classes they
take. Fill in the algorithm below that returns all classes, assuming there is at least one
student in each class. Your algorithm must run in O(m log n) work and O((logm)(log n))
span, where n is the number of students and m is the sum of the number of classes taken
across all students. Note, our solution is one line.

Solution:

fun allClasses(T) = Table.reduce Set.union ∅ T

(c) (5 points) A new startup FastRoute wants to route information along a path in a commu-
nication network, represented as a graph. Each vertex represents a router and each edge
a wire between routers. The wires are weighted by the maximum bandwidth they can
support. FastRoute comes to you and asks you to develop an algorithm to find the path
with maximum bandwidth from any source s to any destination t. As you would expect,
the bandwidth of a path is the minimum of the bandwidths of the edges on that path; the
minimum edge is the bottleneck.

Explain how to modify Dijkstra’s algorithm to do this. In particular, how would you
change the priority queue and the following relax step?

fun relax (Q, (u,v,w)) = PQ.insert (d(u) + w, v) Q

Justify your answer.

Solution: We’ll use a max priority queue instead of a min priority queue used in Dijk-
stra’s. We will also modify the relax step to insert into the priority queue min(d(u), w)
because the quality of a path is the minimum of the edge weights. These changes don’t
affect the correctness of Dijkstra’s, so we could explore the vertices like in Dijkstra’s.
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(d) (5 points) Given a graph with integer edge weights between 1 and 5 (inclusive), you want
to find the shortest weighted path between a pair of vertices. How would you reduce this
problem to the shortest unweighted path problem, which can be solved using BFS?

Solution: Replace each edge with weight i with a simple path of i edges each with
weight 1. Then solve with BFS.

(e) (5 points) Recall the implementation of DFS shown in class using the discover and
finish functions. Circle the correct answer for each of the following statements, assuming
DFS starts at A:

A B

C D

E

discover D could be called before discover E: True False

discover E could be called before discover D: True False

discover D could be called before discover C: True False

finish A could be called before finish B: True False

finish D could be called before discover B: True False

Solution: True, True, True, False, True

(f) (6 points) Circle every type of graph listed below for which star contraction will reduce
the number of edges by a constant factor in expectation in every round until fully reduced
(and hence imply O(|E|) total work). You can assume redundant edges between vertices
are removed.

(a) a graph in which all vertices have degree at most 2
(b) a graph in which all vertices have degree at most 3
(c) a graph in which all vertices have degree

√
|V |

(d) a graph containing a single cycle (i.e. a forest with one additional edge)
(e) the complete graph (i.e. an edge between every pair of vertices)
(f) any graph (still circle others if relevant)

Solution: a, d, e
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Question 2: Dijkstra and A∗ (15 points)

(a) (6 points) Consider the graph shown below, where the edge weights appear next to the
edges and the heuristic distances to vertex G are in parenthesis next to the vertices.

B"
4"

C"

D"

E"

F"

G"

A"

1"

3"

2"

2"

3"

2"

10"

3"

(6)" (5)"

(2)"

(0)"

(5)"

(2)"

(7)"

i. Show the order in which vertices are visited by Dijkstra when the source vertex is A.

Solution: A C B E F D G

ii. Show an order in which vertices are visited by A∗ when the source vertex is A and
the destination vertex is G.

Solution: A C F G

(b) (4 points) What is the key reason you would choose to use A∗ instead of Dijkstra’s algo-
rithm?

Solution: You can use A∗ if you want the shortest path to only a single goal vertex,
and not all shortest paths. A∗ can be much more efficient, as it tries to move toward
the goal more directly, skipping many more vertices.

(c) (5 points) Show a 3-vertex example of a graph on which Dijkstra’s algorithm always fails.
Please clearly identify which vertex is the source.

Solution:

A

/ \

x=4 / \ y=-2 x+y < z < x guarantees failure

/ \ x+y < z <= x may fail depending on the input order

S ------- B

z=3
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Question 3: (Shortest Paths) Wormholes (10 points)

(a) (10 points) In your new job for a secret Government agency you have been told about
the existence of wormholes (also known as Einstein-Rosen bridges) that connect various
locations in the country. You have been tasked with designing an algorithm for finding
the shortest path using a combination of roads and wormholes between a pair of locations.
Traveling through a wormhole is instantaneous, for all practical purposes, but it turns
out that on a given trip someone can only go through two wormholes otherwise they risk
rearrangement of their atomic structure. The wormhole problem is therefore the weighted
shortest path problem (assuming non-negative edge weights) with the additional constraint
that

• Some edges are specially marked

• A path can take at most two of those edges

You still have your Dijkstra code from 210. You don’t want to change your codeafter all
you forgot how ML worksso you just want to preprocess your graph so that a call to your
code SP (s, t) returns the correct solution to the wormhole problem. Explain how to do
this. At most 5 sentences.

Solution: Create three copies of the graph without the wormhole edges: copy 0, copy
1, and copy 2. Connect copy 0 with copy 1 with the wormhole edges, with weight 0.
Likewise connect copy 1 with copy 2 with wormhole edges with weight 0. Now find
the shortest path from SP (s, d) by starting at s in copy 0 and finding the shortest
path to d in any of the three copies.
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Question 4: Strongly Connected Components (20 points)
In this question, you will write 2 functions on directed graphs. We assume that graphs are
represented as:

type graph = vertexSet vertexTable

with key comparisons taking O(1) work.

(a) (10 points) Given a directed graph G = (V,E), its transpose GT is another directed graph
on the same vertices, with every edge flipped. More formally, GT = (V,E′), where

E′ = {(b, a) | (a, b) ∈ E}.

Here is a skeleton of an SML definition for transpose that computes the transpose of
a graph. Fill in the blanks to complete the implementation. Your implementation must
have O(|E| log |V |) work and O(log2 |V |) span.

fun transpose (G : graph) : graph =

let

val S = vertexTable.toSeq(G) (* returns (vertex*vertexSet) seq *)

fun flip(u,nbrs) = Seq.map (fn v => (v,u)) (vertexSet.toSeq nbrs)

val ET = Seq.flatten(Seq.map flip S)

val T = vertexTable. collect ET

in

vertexTable.map vertexSet.fromSeq T

end
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(b) (10 points) A strongly connected component of a directed graph G = (V,E) is a subset
S of V such that every vertex u ∈ S can reach every other vertex v ∈ S (i.e., there is
a directed path from u to v), and such that no other vertex in V can be added to S
without violating this condition. Every vertex belongs to exactly one strongly connected
component in a graph.

Implement the function:

val scc : graph * vertex -> vertexSet

such that scc(G,v) returns the strongly connected component containing v. You may
assume the existence of a function:

val reachable : graph * vertex -> vertexSet

such that reachable(G,v) returns all the vertices reachable from v in G. Not including
the cost of reachable, your algorithm must have O(|E| log |V |) work and O(log2 |V |) span.
You might find transpose useful and can assume the given time bounds.

fun scc (G : graph, v : vertex) : vertexSet =

vertexSet.intersection(reachable(G,v),

reachable(transpose G,v))
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Question 5: (Dynamic Programming) Pipe Cutting (18 points)
Sammy, the proprietor of your friendly neighborhood hardware store (as if they still existed)
will cut a pipe at a cost proportional to its length. You have a pipe and have marked on it n
places it needs to be cut. You want to figure out in what order to have your pipe cut so as to
minimize your expenses. This can be solved with dynamic programming. Let A be a sequence
of fragment lengths, in the order they appear along the pipe, and w(A) =

∑
a∈A a (i.e. the

sum of their lengths).

Note that a greedy method based on picking either the cut nearest the middle of the pipe, or
the middle of the possible cuts does not work. Consider, for example cuts at locations .4, .55
and .7 along the pipe (i.e. A = 〈 0.4, 0.15, 0.15, 0.3 〉). In this case the best first cut is .4.

(a) (6 points) Give a recursive solution to the problem. It should not be more than 3 or 4
lines of pseudocode.

Solution:

fun pipecut(A) =

if |A| ≤ 1 then 0

else
w(A) + mink∈{0,...,|A|−2}{pipecut(A 〈 0, . . . , k 〉) + pipecut(A 〈 k + 1, . . . , |A| − 1 〉)}

(b) (4 points) How many distinct calls are there?

Solution: There are no more than n(n + 1)/2 distinct contiguous subsequences, and
hence at most that many distinct arguments to pipecut.

(c) (4 points) What is the total work assuming sharing on the DAG.

Solution: Each call does O(n) work, so the total work is O(n3).

(d) (4 points) What is the total span.

Solution: Each call has span O(log n), and the depth of the DAG is O(n) so the total
span is O(n log n).
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Question 6: MST and Tree Contraction (25 points)
In SegmentLab, you implemented Bor̊uvka’s algorithm that interleaved star contractions and
finding minimum weight edges. In this question you will analyze Bor̊uvka’s algorithm more
carefully.

We’ll assume throughout this problem that the edges are undirected, and each edge is labeled
with a unique identifier (`). The weights of the edges do not need to be unique, and m = |E|
and n = |V |.

1 % returns the set of edges in the minimum spanning tree of G
2 function MST (G = (V,E)) =
3 if |E| = 0 then {}
4 else let
5 val F = {min weight edge incident on v : v ∈ V }
6 val (V ′, P ) =contract each tree in the forest (V, F ) to a single vertex
7 V ′ = remaining vertices
8 P = mapping from each v ∈ V to its representative in V ′

9 val E′ = {(Pu, Pv, `) : (u, v, `) ∈ E | Pu 6= Pv}
10 in
11 MST (G′ = (V ′, E′)) ∪ {` : (u, v, `) ∈ F}
12 end

(a) (4 points) Show an example graph with 4 vertices in which F will not include all the edges
of the MST.

Solution:

3

o --- o

1 | | 2

o o

(b) (4 points) Prove that the set of edges F must be a forest (i.e. F has no cycle).

Solution: Answer 1: The MST does not have a cycle (it is a tree) and F is a subset
of F so it can’t have a cycle.

Answer 2: AFSOC that there is a cycle. Consider the maximum weight edge on
the cycle. Neither of its endpoints will choose it since they both have lighter edges.
Contradiction.
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(c) (4 points) Suggest a technique to efficiently contract the forest in parallel. What is a tight
asymptotic bound for the work and span of your contract, in terms of n? Explain briefly.
Are these bounds worst case or expected case?

Solution: Use star contraction as described in class. Since in contraction a tree will
always stay a tree, the number of edges must go down with the number of vertices.
Therefore total work will be O(n) and span will be O(log2 n) in expectation.

(d) (4 points) Argue that each recursive call to MST removes, in the worst case, at least half

of the vertices; that is, |V ′| ≤ |V |2 .

Solution: Every vertex will join at least one other vertex. Since edges have two
directions, at least n/2 of them must be selected, which will remove at least n/2
vertices (n = |V |).

(e) (4 points) What is the maximum number of edges that could remain after one step (i.e.
what is |E′|)? Explain briefly.

Solution: m − n/2 since at least n/2 edges are removed, as described in previous
answer.

(f) (5 points) What is the expected work and span of the overall algorithm in terms of m and
n? Explain briefly. You can assume that calculating F takes O(m) work and O(log n)
span.

Solution: Since vertices go down by at least a factor of 1/2 on each round, there will
be at most log n rounds. The cost of each round is dominated by calculating F , O(m)
work and O(log n) span and the contraction of forests O(n) work and O(log2 n) span.
Multiplying the max of each of these by log n gives O(m log n) work and O(log3 n)
span.
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Appendix: Library Functions

signature SEQUENCE =

sig

type ’a t

type ’a seq = ’a t

type ’a ord = ’a * ’a -> order

datatype ’a listview = NIL | CONS of ’a * ’a seq

datatype ’a treeview = EMPTY | ONE of ’a | PAIR of ’a seq * ’a seq

exception Range

exception Size

val nth : ’a seq -> int -> ’a

val length : ’a seq -> int

val toList : ’a seq -> ’a list

val toString : (’a -> string) -> ’a seq -> string

val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

val empty : unit -> ’a seq

val singleton : ’a -> ’a seq

val tabulate : (int -> ’a) -> int -> ’a seq

val fromList : ’a list -> ’a seq

val rev : ’a seq -> ’a seq

val append : ’a seq * ’a seq -> ’a seq

val flatten : ’a seq seq -> ’a seq

val filter : (’a -> bool) -> ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val zip : ’a seq * ’b seq -> (’a * ’b) seq

val zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

val enum : ’a seq -> (int * ’a) seq

val filterIdx : (int * ’a -> bool) -> ’a seq -> ’a seq

val mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq

val update : ’a seq * (int * ’a) -> ’a seq

val inject : ’a seq * (int * ’a) seq -> ’a seq

val subseq : ’a seq -> int * int -> ’a seq

val take : ’a seq -> int -> ’a seq

val drop : ’a seq -> int -> ’a seq

val splitHead : ’a seq -> ’a listview

val splitMid : ’a seq -> ’a treeview

val iterate : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq * ’b

val iteratePrefixesIncl : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq

val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

val scan : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq * ’a

val scanIncl : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq

val sort : ’a ord -> ’a seq -> ’a seq

val merge : ’a ord -> ’a seq * ’a seq -> ’a seq

val collect : ’a ord -> (’a * ’b) seq -> (’a * ’b seq) seq
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val collate : ’a ord -> ’a seq ord

val argmax : ’a ord -> ’a seq -> int

val $ : ’a -> ’a seq

val % : ’a list -> ’a seq

end

ArraySequence Work Span

empty ()

O(1) O(1)
singleton a

length s

nth s i

subseq s (i, len)

tabulate f n
if f(i) has Wi work and Si span

O

(
n−1∑
i=0

Wi

)
O

(
n−1
max
i=0

Si

)
map f s
if f(s[i]) has Wi work and Si span, and |s| = n

zipWith f (s, t)
if f(s[i], t[i]) has Wi work and Si span, and min(|s|, |t|) = n

reduce f b s
if f does constant work and |s| = n

O(n) O(lg n)scan f b s
if f does constant work and |s| = n

filter p s
if p does constant work and |s| = n

flatten s O

(
n−1∑
i=0

(
1 + |s[i]|

))
O(lg |s|)

sort cmp s
if cmp does constant work and |s| = n

O(n lg n) O(lg2 n)

merge cmp (s, t)
if cmp does constant work, |s| = n, and |t| = m

O(m + n) O(lg(m + n))

append (s,t)
if |s| = n, and |t| = m

O(m + n) O(1)
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signature TABLE =

sig

structure Key : EQKEY

structure Seq : SEQUENCE

type ’a t

type ’a table = ’a t

structure Set : SET where Key = Key and Seq = Seq

val size : ’a table -> int

val domain : ’a table -> Set.t

val range : ’a table -> ’a Seq.t

val toString : (’a -> string) -> ’a table -> string

val toSeq : ’a table -> (Key.t * ’a) Seq.t

val find : ’a table -> Key.t -> ’a option

val insert : ’a table * (Key.t * ’a) -> ’a table

val insertWith : (’a * ’a -> ’a) -> ’a table * (Key.t * ’a) -> ’a table

val delete : ’a table * Key.t -> ’a table

val empty : unit -> ’a table

val singleton : Key.t * ’a -> ’a table

val tabulate : (Key.t -> ’a) -> Set.t -> ’a table

val collect : (Key.t * ’a) Seq.t -> ’a Seq.t table

val fromSeq : (Key.t * ’a) Seq.t -> ’a table

val map : (’a -> ’b) -> ’a table -> ’b table

val mapKey : (Key.t * ’a -> ’b) -> ’a table -> ’b table

val filter : (’a -> bool) -> ’a table -> ’a table

val filterKey : (Key.t * ’a -> bool) -> ’a table -> ’a table

val reduce : (’a * ’a -> ’a) -> ’a -> ’a table -> ’a

val iterate : (’b * ’a -> ’b) -> ’b -> ’a table -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a table -> (’b table * ’b)

val union : (’a * ’a -> ’a) -> (’a table * ’a table) -> ’a table

val intersection : (’a * ’b -> ’c) -> (’a table * ’b table) -> ’c table

val difference : ’a table * ’b table -> ’a table

val restrict : ’a table * Set.t -> ’a table

val subtract : ’a table * Set.t -> ’a table

val $ : (Key.t * ’a) -> ’a table

end
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signature SET =

sig

structure Key : EQKEY

structure Seq : SEQUENCE

type t

type set = t

val size : set -> int

val toString : set -> string

val toSeq : set -> Key.t Seq.t

val empty : unit -> set

val singleton : Key.t -> set

val fromSeq : Key.t Seq.t -> set

val find : set -> Key.t -> bool

val insert : set * Key.t -> set

val delete : set * Key.t -> set

val filter : (Key.t -> bool) -> set -> set

val reduceKey : (Key.t * Key.t -> Key.t) -> Key.t -> set -> Key.t

val iterateKey : (’a * Key.t -> ’a) -> ’a -> set -> ’a

val union : set * set -> set

val intersection : set * set -> set

val difference : set * set -> set

val $ : Key.t -> set

end
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MkTreapTable Work Span

size T O(1) O(1)

filter f T ∑
(k 7→v)∈T

W (f(v)) lg |T |+ max
(k 7→v)∈T

S(f(v))
map f T

tabulate f X
∑
k∈X

W (f(k)) max
k∈X

S(f(k))

reduce f b T
if f does constant work

O(|T |) O(lg |T |)

insertWith f (T,(k,v))
if f does constant work O(lg |T |) O(lg |T |)

find T k
delete (T,k)

domain T
O(|T |) O(lg |T |)range T

toSeq T

collect S
O(|S| lg |S|) O(lg2 |S|)

fromSeq S

For each argument pair (A,B) below, let n = max(|A|, |B|) and m = min(|A|, |B|).

MkTreapTable Work Span

union f (X,Y )

O
(
m lg(n+m

m )
)

O
(
lg(n + m)

)intersection f (X,Y )

difference (X,Y )

restrict (T,X)

subtract (T,X)
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