
Chapter 6

Sets and Tables

In this chapter we consider abstract data types for sets and tables.

6.1 An Abstract Data Type for Sets

Sets undoubtedly play an important role in mathematics and are often needed in the implementa-
tion of various algorithms.

Question 6.1. Can you think of a reason why you would prefer using a set data type
instead of a sequence?

Whereas a sequence is an ordered collection, a set is its unordered counterpart. In addition, a
set has no duplicate element. In some algorithms and applications, ordering is not necessary and
it may be important to make sure that there are no duplicates.

Specification of sets. We now define an abstract data type for sets. The definition follows the
mathematical definition of sets from set theory and is purely functional. In particular, when
updating a set (e.g. with insert or delete) it returns a new set rather than modifying the old set.
The specification for sets is given in Abstract Data Type 6.2.

Question 6.3. Can you see a redundancy in this interface?

Note that the bulk operations, intersection, union, difference can be imple-
mented in terms of the operations find, insert, delete. Indeed, they are the bulk
versions of these operations.

• intersection — search for multiple elements instead of one.

103



104 CHAPTER 6. SETS AND TABLES

Abstract Data Type 6.2 (Sets). For a universe of elements U (e.g. the integers or
strings), the SET abstract data type is a type S representing the power set of U (i.e., all
subsets of U) along with the following functions:

empty : S = ∅
size(S) : S→ N = |S|
singleton(e) : U→ S = {e}
filter(f, S) : ((U→ B)× S)→ S = {s ∈ S | f(s)}
find(S, e) : S× U→ B = |{s ∈ S | s = e}| = 1
insert(S, e) : S× U→ S = S ∪ {e}
delete(S, e) : S× U→ S = S \ {e}
intersection(S1, S2) : S× S→ S = S1 ∩ S2

union(S1, S2) : S× S→ S = S1 ∪ S2

difference(S1, S2) : S× S→ S = S1 \ S2

where N are the natural numbers (non-negative integers) and B = {T,F}.

• union — insert multiple elements.

• difference — delete multiple elements.

Question 6.4. Can you implement the non-bulk operations in terms of the bulk opera-
tions?

We can implement find, insert, and delete in terms of the others.

find(S, e) = size(intersection(S,singleton(e))) = 1

insert(S, e) = union(S,singleton(e))

delete(S, e) = difference(S,singleton(e))

Question 6.5. Can you see a way to implement these bulk operations in terms of the
non-bulk versions?

One simple idea would be to perform the non-bulk operations one by one, one after the other.

Question 6.6. Do you see a disadvantage to this approach?

The problem is that this approach is completely sequential.



6.1. AN ABSTRACT DATA TYPE FOR SETS 105

It turns out these operations can be performed in parallel more efficiently than with using
the non-bulk versions. We will not talk about the parallel-efficient implementations of these
operations in this chapter, but will cover them in a later chapter. We will, however, talk about
their cost specifications.

Remark 6.7. We write this definition to be generic and not specific to Standard ML. In
our library, the type S is called set and the type U is called key, the arguments are not
necessarily in the same order, and some of the functions are curried. For example, the
interface for find is find : set → key → bool. Please refer to the documents for
details. In the pseudocode, we will give in class and in the notes we will use standard set
notation as in the right hand column of the table above.

Remark 6.8. You may notice that the interface does not contain a map function. If we
try to generalize the notion of map from sequences, a map function does not make sense
in the context of a set: if we interpret map to take in a collection, apply some function
to each element and return a collection of the same structure. Consider a function that
always returns 0. Mapping this over a set would return all zeros, which would then be
collapsed into a singleton set, containing exactly 0. Therefore, such a map would allow
reducing the set of arbitrary size to a singleton, which doesn’t match the map paradigm
(which traditionally preserves the structure and size).

Remark 6.9. Most programming languages either support sets directly (e.g., Python
and Ruby) or have libraries that support them (e.g., in the C++ STL library and Java
collections framework). They sometimes have more than one implementation of sets. For
example, Java has sets based on hash tables and balanced trees. Unsurprisingly, the set
interface in different libraries and languages differ in subtle ways. So, when using one of
these interfaces you should always read the documentation carefully.

Cost specification for sets. So far, we have laid out a semantic interface, but before we can
put it to use, we need to worry about the cost specification.

As we have discussed before, cost specifications depend on implementation.

Question 6.10. Can you think of a way to implement sets?

Sets can be implemented in several ways. The most common efficient ways used hashing or
balanced trees. There are various tradeoffs in cost. For simplicity, we’ll consider a cost model
based on a balanced-tree implementation. We will cover how to implement these set operations
when we talk about balanced trees later in the course. For now, a good intuition to have is that
we use a comparison function to keep the elements in sorted order in a balanced tree.



106 CHAPTER 6. SETS AND TABLES

Since a balanced tree implementation requires comparisons inside the various set opera-
tions, the cost of these comparisons affects the work and span. For this, we’ll assume that
compare has Cw work and Cs span.

Cost Specification 6.11 (Tree Sets).

Work Span

size(S)
O(1) O(1)

singleton(e)

filter(f, S) O

(∑
e∈S

W (f(e))

)
O
(
log |S|+max

e∈S
S(f(e))

)
find(S, e)

O(Cw · log |S|) O(Cs · log |S|)insert(S, e)
delete(S, e)

intersection(S1, S2)
O
(
Cw ·m · log(1 + n

m
)
)

O
(
Cs · log(n+m)

)
union(S1, S2)
difference(S1, S2)

where n = max(|S1|, |S2|) and m = min(|S1|, |S2|).

Question 6.12. Can you see the why the bulk operations are more work and span
efficient?

If we perform for example |S2| applications of each of these operations, the work and span
would be |S2| log |S1| (ignoring the cost of the comparison). This is significantly worse that what
we would obtain with the bulk operations, which has has a vastly improved span (by a linear
factor).

The work of the bulk operations might be somewhat more difficult to see. The key point to
realize is that the bound is linear in the smaller of the two sets and logarithmic in the ratio of the
two sets.

This means that if the ratio is very uneven, then it behaves very much like the naive algorithm
that performs the non-bulk version repeatedly. For example, when one of the sets is a singleton,
then the work is O(log n).

However, if the ratio is close to even, then it can reduce the total work to linear. When n = m,
the work is simply

O(Cw ·m · log(1 + 1)) = O(Cw · n).
This should not be surprising, because it corresponds to the cost of merging two approximately
equal length sequences (effectively what these operations have to do).



6.1. AN ABSTRACT DATA TYPE FOR SETS 107

Figure 6.1: The work of the intersection, union, difference functions.

In fact, these bounds turn out to be both the theoretical upper and lower bounds for any
comparison-based implementation of sets. We will get to this later. Figure 6.1 shows a plot of
this function.

Exercise 6.13. Draw a two dimensional version of this figure by assuming one of S1 to
be of fixed size and varying the size of S2 (or vice versa).

Consequently, in designing parallel algorithms it is good to think about how to use intersection,
union, and difference instead of find, insert, and delete if possible.

Example 6.14. One way to convert a sequence to a set would be to insert the elements
one by one, which can be coded as

1 fun fromSeq S =
2 Seq.iter Set.insert Set.empty S

However, the above is sequential. To do it in parallel we could instead do

1 fun fromSeq S =
2 Seq.reduce Set.union Set.empty 〈 {x} : x ∈ S 〉



108 CHAPTER 6. SETS AND TABLES

Exercise 6.15. What is the work and span of the first version of fromSeq.

Exercise 6.16. Show that on a sequence of length n the second version of fromSeq
does O(Cwn log n) work and O(log2 n) span.

Summary 6.17. We talked about sets.

• Unordered collection.

• Unique elements.

• Supports efficient, find, insert, delete, operations serially and in parallel (bulk).

6.2 Tables: Assigning A Value to each Key

Since the elements of a set are unique (no duplicates), we can think of them as keys.

In many applications, it is important to be able to assign a value or data to each key. A table
is an abstract data type that stores for each key data associated with it.

A table essentially stores key-value pairs in such a way that we can perform a range of
operations quickly, e.g., finding the value for a key, inserting new key-value pairs, and deleting
keys (and their values).

Question 6.18. Have you seen similar data structures before? Do you recall what they
are called?

Tables are common data structures. They are also called dictionaries, associative arrays,
maps, mappings, and functions (in set theory).

Most languages have tables either built in (e.g. dictionaries in Python, Perl, and Ruby),
or have libraries to support them (e.g. map in the C++ STL library and the Java collections
framework). We note that the interfaces for these languages and libraries have common features
but typically differ in some important ways, so be warned. Most do not support the “parallel”
operations we discuss.

Here we will define tables mathematically in terms of set theory before committing to a
particular language.



6.2. TABLES: ASSIGNING A VALUE TO EACH KEY 109

Specifying tables. The specification of tables is quite similar to sets.

Definition 6.19. A table is set of key-value pairs where each key appears only once in
the set.

We will use the following notation for a table

{(k1 7→ v1), (k2 7→ v2), . . . , (kn 7→ vn)} ,

where we have keys and values—and each key ki mapped to a value vi.

We choose this notation because that it makes clear that we are using tables rather than some
other data structure such as sets.

Question 6.20. Can you see how we might represent tables as sets?

We can also represent a table as a set of key value pairs, e.g., {(k1, v1), (k2, v2), . . . , (kn, vn)}.
Since keys are unique so are key-value pairs.

Question 6.21. Does this way of viewing maps remind you of a mathematical object?

Such sets are called functions in set theory since they map each key to a single value. We avoid
this terminology so that we don’t confuse it with functions in a programming language. However,
note that the (find T) in the interface is precisely the “function” defined by the table T. In
fact it is a partial function since the table might not contain all keys and therefore the function
might not be defined on all inputs.

Abstract Data Type 6.22 defines tables.

Question 6.23. Can you see some differences between sets and tables?

There are several differences between sets and tables.

• The find function does not return a Boolean, but instead it returns the value associated
with the key k. As it may not find the key in the table, its result may be bottom (⊥). For
this reason, in the Table library, the interface for find is find : ’a table→ key→
’a option, where ’a is the type of the values.

• When we insert a key-value pair, we can’t simply ignore it if the key is already present,
because the values might be different.



110 CHAPTER 6. SETS AND TABLES

Abstract Data Type 6.22 (Tables). For a universe of keys K, and a universe of values V,
the TABLE abstract data type is a type T representing the power set of K× V restricted
so that each key appears at most once (i.e., any set of key-value pairs where a key appears
just once) along with the following functions:

empty : T = ∅
size(T ) : T→ N = |T |
singleton(k, v) : K× V→ T = {k 7→ v}
filter(p, T ) : (K× V→ B)× T→ T = {(k 7→ v) ∈ T | p(k, v)}
map(f, T ) : (V→ V)× T→ T = {k 7→ f(v) : (k 7→ v) ∈ T}

find(T, k) : T×K→ (V ∪ ⊥) =

{
v (k 7→ v) ∈ T
⊥ otherwise

insert(f, T, (k, v)) : (V× V→ V)× T× (K× V)→ T =
merge(f, T, {k 7→ v})

delete(T, k)) : T×K→ T = {(k′ 7→ v′) ∈ T | k 6= k′}
extract(T, S) : T× S→ T = {(k 7→ v) ∈ T | k ∈ S}
merge(f, T1, T2) : (V× V→ V)× T× T→ T =

∀k ∈ K,


k 7→ f(v1, v2) (k 7→ v1) ∈ T1

∧ (k 7→ v2) ∈ T2

k 7→ v1 (k 7→ v1) ∈ T1

k 7→ v2 (k 7→ v2) ∈ T2

erase(T, S) : T× S→ T = {(k 7→ v) ∈ T | k /∈ S}

where S is the power set of K (i.e., any set of keys), N are the natural numbers (non-
negative integers), and B = {T,F}.

For this reason, the insert function takes a function f as an argument,

f : V× V→ V.

The purpose of f is to specify what to do if the key being inserted already exists in the
table; f is applied to the two values. This function might simply return either its first or
second argument, or it can be used, for example, to add the new value to the old one.

• The parallel counterpart of find is the extract function. The extract operation can
be used to find a set of values in a table, returning just the table entries corresponding to
elements in the set.

• The parallel counterpart of insert is the merge function, which takes a similar function
to insert since it also has to consider the case that an element appears in both tables.
The merge operation can add multiple values to a table in parallel by merging two tables.



6.2. TABLES: ASSIGNING A VALUE TO EACH KEY 111

• The parallel counterpart of delete is the erase function, The erase operation can
delete multiple values from a table in parallel.

• We also introduce new specification-language notation for map and filter on tables:

{k 7→ f(v) : (k 7→ v) ∈ T}

is equivalent to map(f, T ) and

{(k 7→ v) ∈ T | p(k, v)}

is equivalent to filter(p, T ).

Specifying the cost of tables. The costs of the table operations are very similar to sets.

Cost Specification 6.24 (Tables).

Work Span

size(T )
O(1) O(1)

singleton(k, v)

filter(p, T ) O

( ∑
(k 7→v)∈T

W (p(k, v))

)
O
(
log |T |+ max

(k 7→v)∈T
S(f(k, v))

)
map(f, T ) O

( ∑
(k 7→v)∈T

W (f(v))

)
O
(
log |T |+ max

(k 7→v)∈T
S(f(v))

)
find(S, k)

O(Cw log |T |) O(Cs log |T |)insert(T, (k, v))
delete(T, k)

extract(T1, T2)
O
(
Cwm log(1 + n

m
)
)

O
(
Cs log(n+m)

)
merge(T1, T2)
erase(T1, T2)

where n = max(|T1|, |T2|) and m = min(|T1|, |T2|).

As with sets there is a symmetry between the three operations extract, merge, and
erase, and the three operations find, insert, and delete, respectively, where the prior
three are effectively “parallel” versions of the earlier three.



112 CHAPTER 6. SETS AND TABLES

Remark 6.25. We note that, in the SML Table library we supply, the functions are
polymorphic (accept any type) over the values but not the keys. In particular the signature
starts as:

1 signatureTABLE =
2 sig
3 type ′a table
4 type ′a t = ′a table
5 structure Key : EQKEY
6 type key = Key.t
7 structure Seq : SEQUENCE
8 type a seq = ′a Seq.seq
9 type set = unit table

10 ...
11 val find : ′a table − > key − > ′a option
12 ...

The ’a in ’a table refers to the type of the value. The key type is fixed to be
key. Therefore there are separate table structures for different keys (e.g. IntTable,
StringTable). The reason to do this is because all the operations depend on the key
type since keys need to be compared for a tree implementation, or hashed for a hash
table implementation. Also note that the signature defines set to be a unit table.
Indeed a set is just a special case of a table where there are no values.

Remark 6.26. In the SML Table library, we supply a collect operation that takes
a sequence of key-value pairs and produces a table that maps every key in S to all the
values associated with it in S, gathering all the values with the same key together in a
sequence. This is equivalent to using a sequence collect followed by a Table.fromSeq.
Alternatively, it can be implemented as

1 function collect(S) =
2 let
3 val S’ = 〈 {k 7→ 〈 v 〉} : (k, v) ∈ S 〉
4 in
5 Seq.reduce (Table.merge Seq.append) {} S ′

6 end

Exercise 6.27. Figure out what this code does.



6.3. EXAMPLE: BINGLE R© IT 113

Remark 6.28. Tables are similar to sets: they extend sets so that each key now carries a
value. Their cost specification and implementations are also similar. In fact, in 15210
SML library, tables are implemented simply as sets where each key carries unit (constant)
value.

6.3 Example: Bingle R© It

Question 6.29. Can you think of some applications of sets and tables?

There are many. Here we consider an application of sets and tables to searching a corpus of
documents.

In particular lets say one night, late, while avoiding doing your 210 homework you come
up with a great idea: provide a service that indexes all the pages on the web so that people can
search them by keywords. You figure a good name for such a service would be Bingle R©.

Question 6.30. Can you think of a simple algorithm to solve the problem.

Assuming that you have a copy of the Internet is some format, you can traverse it every time
a query comes in.

Question 6.31. Going back to one of lectures on designing algorithms, can you see the
problem with that?

The problem is redundancy. Every time a search comes is you have to traverse the whole
data.

Instead, a better thing to do would be to build an index and use the index to avoid the
redundant work. The idea would be for the index to organize the data in such a way to make
searching efficient. You want queries to be fast since people will be running them all the time.
On the other hand, the index can be slower to build, because you will run it every once in a while
to keep your data up to date.

Question 6.32. Can you thing of the types of queries that you would wish to provide for?

You may want to support are logical queries on words involving And, Or, and AndNot. For
example a query might look like



114 CHAPTER 6. SETS AND TABLES

“CMU” And “fun” And (“courses” Or “clubs”)

and it would return a list of web pages that match the query (i.e., contain the words “CMU”,
“fun” and either “courses” or “clubs”). This list would include the 15-210 home page, of course.

Remark 6.33. This idea has been thought of before. Indeed these kinds of searchable
indexes date back to the 1970s with systems such as Lexis for searching law documents.
Today, beyond web searches, searchable indices are an integral part of most mailers and
operating systems. The different indices support somewhat different types of queries.
For example, by default Google supports queries with And and adjacent to but
with their advanced search you can search with Or, AndNot as well as other types of
searches.

Example 6.34. As a simple set of documents, we can consider the tweets made by some
of your friends yesterday.

T = 〈 (“jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today I had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218”),
〉

where the identifiers are the names, and the contents is the tweet.
On this set of documents, searching for “fun” and “club” would return “jack”, “mary”,

“sue”, “peter”, and “john”; lots of fun. (Note that our search returned “john” as well,
even though he wasn’t having that much fun.)

You can imagine that you would want to support an interface such as the following.

The input to makeIndex is a sequence of pairs each consisting of a document identifier (e.g.
the URL) and the contents of the document as a single text string.



6.3. EXAMPLE: BINGLE R© IT 115

Example 6.35. Continuing on our example, we can use the interface to make an index
of these tweets:

val f = (find (makeIndex(T ))) : word → docs

In addition to making the index, we partially apply find on the index. This makes it
possible to use find with the index.
For example, the code,

toSeq(And(f "fun", Or(f "class", f "club")))

⇒ 〈"jack", "mary", "sue", "john" 〉

returns all the documents (tweets) that contain “fun” and either “class” or “club”.
The code,

size(AndNot(f "fun", f "tiddlywinks"))

⇒ 4

returns the number of documents that contain “fun” and not “tiddlywinks”.

Question 6.36. Can you think of a way to implement this interface? Let’s start with the
makeIndex function.

We can implement this interface using sets and tables. The makeIndex function can be
implemented as follows.

1 function makeIndex(docs) =
2 let
3 function tagWords(id,str) = 〈 (w,id) : w ∈ tokens(str) 〉
4 val Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 val Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

The tagWords function takes a document as a pair consisting of the document identifier and
contents, breaks the string into tokens (words) and tags each token with the identifier returning a
sequence of these pairs.



116 CHAPTER 6. SETS AND TABLES

Example 6.37. Here is an example of how tagWords works:

tagWords(“jack”,“chess club was fun”)
⇒ 〈 (“chess”,“jack”),(“club”, “jack”), (“was”, “jack”), (“fun”, “jack”) 〉

To build the index, we apply tagWords to all documents, and flatten the result to a
single sequence.
In our example the result would start as:

Pairs = 〈(“chess”,“jack”),(“club”, “jack”), (“was”, “jack”),
(“fun”, “jack”), (“I”, “mary”), (“had”, “mary”), (“fun”, “mary”), . . .

Using Table.collect, we then collect the entries by word creating a sequence of
matching documents.
In our example it would start:

Words = {(“a” 7→ 〈“mary” 〉),
(“at” 7→ 〈“mary”, “peter” 〉),
. . .
(“fun” 7→ 〈“jack”, “mary”, “sue”, “peter”, “john” 〉),
. . .

Finally, for each word the sequences of document identifiers is converted to a set. Note
the notation that is used to express a map over the elements of a table.

Question 6.38. Do you see how we might implement the rest of the interface, which
includes functionality for performing searches?

The rest of the interface can be implemented as follows:

function find T v = Table.find T v

function And(s1, s2) = s1 ∩ s2

function Or(s1, s2) = s1 ∪ s2

function AndNot(s1, s2) = s1 \ s2
function size(s) = |s|
function toSeq(s) = Set.toSeq(s)

Cost. Assuming that all tokens have a length upper bounded by a constant, the cost of
makeIndex is dominated by the collect, which is basically a sort. The work is therefore
O(n log n) and the span is O(log2 n), assuming the words have constant length.



6.3. EXAMPLE: BINGLE R© IT 117

Note that if we do a size(f "red") the cost is only O(log n) work and span. It just
involves a search and then a length.

If we do And(f "fun", Or(f "courses", f "classes")) the worst case work
and span are at most:

W = O(|f("fun")|+ |f("courses")|+ |f("classes")|)
S = O(log |index|)

The sum of sizes is to account for the cost of the And and Or. The actual cost could be
significantly less especially if one of the sets is very small.



118 CHAPTER 6. SETS AND TABLES

.


	Sets and Tables
	An Abstract Data Type for Sets
	Tables: Assigning A Value to each Key
	Example: Bingle® It


