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Chapter 4

Sequences

A sequence is an ordered set, i.e., is a col-
lection of elements that are totally ordered.
We write a sequence by listing their elements
from left to right according to their order de-
marcated by left and right angle brackets. For
example, 〈 a, b, c 〉 is a sequence where a is the
first, b is the second, and c is the third element.
A sequence can be finite or (countably) infi-
nite, as in 〈0, 1, 2, 3 . . .〉. In this course, how-
ever, we mostly consider finite sequences.

We use sequences to represent many differ-
ent kinds of data, but it is important not to as-
sociate a sequence with a particular implementation—
e.g., with an array of contiguous locations in
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66 CHAPTER 4. SEQUENCES

the memory of the machine. Instead we will
think of sequences abstractly in terms of their
mathematical properties, and the functions they
support. By thinking at this level of abstrac-
tion, we can use sequences without commit-
ting a particular implementation. This allows
us for example to choose an implementation
that suits our needs best. For example, we
will consider three different implementations
of sequences, one based on arrays, one based
on linked-lists, and the third based on trees.

4.1 Defining and Writing Sequences

We can define sequences mathematically as
shown in Definition 4.1 . As can be seen in
the definition, we have a special term “ordered
pairs”, or simply as “pairs” for sequences with
only two elements, because they arise frequently.
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Definition 4.1. An ordered pair (a, b) is
a pair of elements in which the element on
the left, a, is identified as the first entry,
and the one on the right, b, as the second
entry.
An α sequence is a mapping (function)
from N to α with domain {0, . . . , n− 1}
for some n ∈ N (we use N to indicate the
natural numbers, including zero). Tradi-
tionally sequences are indexed from 1 not
0, but being computer scientists, we vio-
late the tradition here.
This mathematical definition might seem pedan-

tic, and is probably not necessary to go through
in detail now, but it is useful for at least a cou-
ple reasons—it allows for a concise but yet
precise definition of the semantics of the func-
tions on sequences, and we will see, relating
sequences to mappings will make a nice sym-
metry with the operations on mappings (also
called tables or dictionaries). One thing to
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notice in the definition is that sequences are
parametrized on the type (i.e. set of possible
values) of their elements.

Example 4.2. Let A = {0, 1, 2, 3} and
B = {a, b, c}. The relation

R = {(0, a), (1, b), (3, a)}
is a function from A to B since each ele-
ment only appears once on the left. It is,
however, not a sequence since there is a
gap in the domain.
The relation

Z = {(1, b), (3, a), (2, a), (0, a)}
from N to B is a sequence since it is a
function with domain {0, . . . , 3}.

Writing sequences as a set of integer value
pairs becomes tiresome, so in this course we
use triangle brackets to indicate sequences as
defined by the following syntax.
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Syntax 4.3 (Sequences). We use

〈 s0, s1, . . . , sn−1 〉
as shorthand for the sequence
{(0, s0), (1, s1), . . . , ((n− 1), sn−1)}.
A character sequence is called a string
and we use the standard syntax of placing
the characters between double quotes with
no spaces or commas:

‘‘c0c1c2cn−1’’.
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Example 4.4. Some example sequences:

• An integer sequence (or Z sequence):
〈 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 〉.
• A character sequence, or a string:
〈’s,’e,’q 〉 ≡ ‘‘seq’’ .

• An (integer × string) sequence:
〈 (10,‘‘ten’’), (1,‘‘one’’), (2,‘‘two’’) 〉 .
• A (string sequence) sequence:
〈 〈‘‘a’’ 〉 , 〈‘‘nested’’,‘‘sequence’’ 〉 〉 .
• A function sequence, or more specifi-

cally a (Z→ Z) sequence:〈
(fn x⇒ x2), (fn y ⇒ y + 2), (fn x⇒ x− 4)

〉
.

4.2 Computing with Sequences

Having defined sequences, we are now ready
to start looking at operations on sequences that
enable us to perform interesting computations
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with them. ADT 4.5 shows the specification
of an abstract data type for sequences using
the mathematical definition of sequences shown
in Definition 4.1. The ADT can be broadly
divided into constructor functions that create
sequences such as empty, singleton, and
tabulate, and operations, such as nth, map.
In addition to the operations specified here,
we will consider iter, iterh, reduce, and
scan later in this chapter.

Sequences is one of the most prevalent ADT’s
used in this course, and more generally in com-
puter science. For economy in writing, com-
munication, and cognition, we have developed
a syntax for sequences and the operations on
them. Syntax 4.7 illustrates this syntax. In
the rest of this section, we briefly explain the
operations in the sequence ADT and their syn-
tax.
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Abstract Data Type 4.5 (Sequences). For a value type α, the sequence data type is
the type α S consisting the set of all α sequences, and the following values and functions
on α S:

empty : α S = {}
singleton(v) : α→ α S = {(0, v)}
tabulate(f, n) : (N→ α)× N→ α S = {(i, f(i)) : 0 ≤ i < n}
length(A) : α S→ N = |A|
nth(A, i) : α S× N→ (α ∪ {⊥}) =

{
v (i, v) ∈ A
⊥ otherwise

map(f, A) : (α→ β)× α S→ β S = {(i, f(v)) : (i, v) ∈ A}
subseq(A, s, l) : α S× N× N→ α S = {(i− s, v)

: (i, v) ∈ A | s ≤ i < s+ l}
append(A,B) : α S× α S→ α S = A ∪ {(i+ |A|, v) : (i, v) ∈ B}
filter(f, A) : (α→ B)× α S→ α S = {(| {(j, x) ∈ A | j < i ∧ f(x)} |, v)

: (i, v) ∈ A | f(v)}
flatten(A) : α S S→ α S = {(i+∑(k,X)∈A,k<j |X|, v)

: (i, v) ∈ Y, (j, Y ) ∈ A}
update(A, (j, v)) : α S× (N× α)→ α S = {(i, x) : (i, v) ∈ A},

x =

{
y i = j
v otherwise

inject(A,P ) : α S× N× α S→ α S = {(i, x) : (i, v) ∈ A},
x =

{
y (j, i, y) ∈ P
v otherwise

where B = {true, false}. The additional functions iter, iterh, reduce, and
scan are defined later.

Remark 4.6 (Comprehensions). Notation
such as

{
x2 : x ∈ A | isPrime(x)

}
in

which one set is defined in terms of the
elements of other sets, and conditions on
them is referred to as a set comprehen-
sion. The example can be read as: the set
of squares of the primes in the setA. Com-
prehensions are commonly used in mathe-
matics, because of the wonderful economy
of expression and “comprehension” that
they offer.
In this book we make heavy use of com-
prehension syntax. Specifically, the syn-
tax for sequences is based on set compre-
hensions, taking of course the relatively
close correspondence between sets and se-
quences. For brevity, the comprehension
notation on sequences omits the ordering
constraints but this is intuitively easy to
see based on the usage. For completeness,
we specify the ordering when defining the
syntax.
Syntax based on set comprehensions is in-
cluded in many programming languages
either directly for sets (e.g. SETL), or for
other collections of values such as lists,
sequences, or mappings (e.g. Python,
Haskell and Javascript). We should note,
however, that the syntax is not uniform
among the languages. Indeed even among
texts on set theory in mathematics the syn-
tax for set comprehensions varies signifi-
cantly. In our usage, we try to be self con-
sistent, but necessarily we are not always
consistent with usage found elsewhere. To
be precise we always view comprehen-
sions as syntactic sugar for some specific
function, and always define the translation
between the two, as we do in Syntax 4.7).
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Syntax 4.7 (Syntax for Sequences). The table below defines the syntax for sequenced
used throughout this course. In the definition i is a variable ranging over natural num-
bers, x is a variable ranging over the elements of a sequence, e is a PML expression, en
and e′n are PML expressions whose values are natural numbers, es is a PML expression
whose value is a sequence, p is a pattern that binds one or more variables.
〈 〉 ≡ empty
〈 e 〉 ≡ singular (e)
〈 e : 0 ≤ i < en 〉 ≡ tabulate (fn i⇒ e en)
|S| ≡ length (S)
S[i] ≡ nth (S)
〈 e : p ∈ es 〉 ≡ map (fn p⇒ e) es
〈x ∈ es | e 〉 ≡ filter (fn x⇒ e) es
A[el, · · · , e′n] ≡ subseq (A, el, e

′
n − en + 1)

Empty and singleton. To construct a sequence, we can
use the function emptywhich returns and empty
sequence, and the function singletonwhich
takes an element and returns a sequence con-
taining that element.

Tabulate. To generate a larger sequence, we can
use the tabulate function. Given a func-
tion f and a natural number n, tabulate f n
generates a sequence of length n consisting of
〈 f (0), f (1), . . . , f (n− 1) 〉. Since, tabulate
can apply the function f at each number inde-
pendently, it can evaluate in parallel.
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Syntax 4.8 (Tabulate).

〈 e : 0 ≤ i < en 〉 ≡ tabulate (fn i⇒ e) en

where e and en are expressions, the second
evaluating to an integer, and i is a vari-
able. We can also start at a number other
than 0, as in:

〈 e : el ≤ i < eh 〉 .

Example 4.9. Given the Fibonacci func-
tion fib(i), the expression:

〈fib(i) : 0 ≤ i < 9 〉
is equivalent to:

tabulate fib 9

and when evaluated returns the sequence:

〈 0, 1, 1, 2, 5, 8, 13, 21, 34 〉 .

Length and indexing. The function length returns the
length of a given sequence and the function
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nth returns the element of a sequence at a
specified index. Of course the index demanded
might be out of range if for example it is less
than 0 or greater or equal to the length of the
sequence. In this case, the function returns the
special value ⊥, as described before, which
indicates an error (exception). The syntax for
these function is more or less standard. as
shown in Syntax 4.7.

Map. A common operation on sequences is do-
ing something with every element of a sequence.
For example we might want to add five to each
element of a sequence. For this purpose we
supply a map f S function that applies the
function f to each element of S returning a
sequence of equal length with the results.

For mapping over sequences, we use special
syntax inspired by the mathematical notation
on sequences.
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Syntax 4.10 (Map).

〈 e : p ∈ es 〉 ≡ map (fn p⇒ e) es

where e and es are expressions, the sec-
ond evaluating to a sequence, and p is a a
pattern of variables (e.g. x or (x, y)).

Example 4.11. Given the integer sequence
S = 〈 9,−1, 4, 11, 13, 2 〉, the expression:〈

x2 : x ∈ S
〉

is equivalent to:

map (fn x⇒ x2) S

and when evaluated returns the sequence:

〈 81, 1, 16, 121, 169, 4 〉 .
As with tabulate, in map the function f

can be applied to all the elements of the se-
quence in parallel. As we will see in the cost
model, this means the span of the function is
the maximum of the spans of the function ap-
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plied at each location, instead of the sum. We
will also see that map generalizes to arbitrary
mappings, not just sequences.

The function map can easily be implemented
using tabulated as follows:

map f S = tabulate (fn i ⇒ f(nth(S, i))) (length S)

or equivalently in our sequence notation as
map f S = 〈 f(S[i]) : 0 ≤ i < |S| 〉

But, as we will see, this is not always an effi-
cient way to implement map.

It is often useful to subselect the elements
from a sequences that satisfy some predicate.
For example, in quick sort (Chapter 7) we will
want all the elements that are less (or greater)
than a pivot element. For this we can use the
filter f S function that applies a Boolean
function f to each element of S, and returns
the sequence consisting exactly of those ele-
ments of s ∈ S for which f (s) returns true.
These elements maintain their order.
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Syntax 4.12 (Filter).

〈x ∈ es | e 〉 ≡ filter (fn x⇒ e) es

It is important to note the distinction be-
tween the colon (:) and the bar (|) in the
syntax. They can be used together, as in:〈
e : x ∈ es | ef

〉
≡ map (fn x⇒ e) (filter (fn x⇒ ef ) es) .

What appears before the colon (if any) is
an expression to apply each element of the
sequence to generate the result, and what
appears after the bar (if there is any) is
an expression to apply to each element to
decide whether to keep it.
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Example 4.13. Given the integer sequence
S = 〈 9, 7, 13, 4, 11, 21 〉, and a function
isPrime(v) which checks if v is prime,
the expression:

〈x ∈ S | isPrime(x) 〉
is equivalent to:

filter isPrime S

and when evaluated returns the sequence:

〈 7, 13, 11 〉 .
As with map and tabulate, the function f
in filter can be applied to the elements in
parallel.

Subsequence, append, and flatten. It is often useful to extract
a subsequence from a sequence. The subseq(A, s, l)
function extracts a contiguous subsequence start-
ing at location s and with length l. If the sub-
sequence is out of bounds of A, only the part
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within A is returned.

Syntax 4.14 (Subsequence).

A[el, · · · , eh] ≡ subseq(A, el, eh−el+1)

It is also useful to put sequences together.
The append(S1, S2) function appends the se-
quence S2 after the sequence S1. To append
more than two sequences the flatten(S)
function takes a sequence of sequences and
flattens them—i.e. if the input is a sequence
S = 〈S1, S2, . . . , Sn 〉 it appends all the Si to-
gether one after the other.

Example 4.15. We have:

append(〈 1, 2, 3 〉 , 〈 4, 5 〉) = 〈 1, 2, 3, 4, 5 〉
and

flatten(〈 〈 1, 2, 3 〉 , 〈 4 〉 , 〈 5, 6 〉 〉) = 〈 1, 2, 3, 4, 5, 6 〉 .

Updates. It is often convenient to update elements
of a sequence. The function update(S, (i, v)),
updates location i of sequence S to contain the
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value v. If the location is out of range for the
sequence, the function does nothing. It can
be useful to update multiple elements at once.
The function inject(S, P ) takes a sequence
P of location-value pairs and updates each lo-
cation with its associated value. If any loca-
tions are out of range, that pair does nothing.
If multiple locations are the same, the right-
most one gets written.
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Example 4.16. Given the string sequence

S = 〈‘‘the’’,‘‘cat’’,‘‘in’’,‘‘the’’,‘‘hat’’ 〉 ,
update(S, (1,‘‘bat’’))

gives

〈‘‘the’’,‘‘bat’’,‘‘in’’,‘‘the’’,‘‘hat’’ 〉
since location 1 is updated with
‘‘bat’’, and

inject(S, 〈 (4,‘‘log’’), (1,‘‘dog’’), (6,‘‘hog’’), (4,‘‘bog’’), (0,‘‘a’’) 〉)
gives

〈‘‘a’’,‘‘dog’’,‘‘in’’,‘‘the’’,‘‘bog’’ 〉
since location 0 is updated with ‘‘a’’,
location 1 with ‘‘dog’’, and loca-
tion 4 with ‘‘bog’’ (it appears after
‘‘log’’ in the input sequence). The en-
try with location 6 is ignored since it is out
of range for S.
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Operating on multiple sequences. In the examples we have
considered thus far, we have operated on a
single sequence, for example, when making a
new sequence via the function map. In some
cases, we need to consider multiple sequences.
For example, we may want to form a sequence
by pairing each element of one sequence S
with all elements of the another sequence T ,
i.e., when computing the Cartesian product.

We use the following syntax to do this
〈 (x, y) : x ∈ S, y ∈ T 〉 .

An immediate question that arises when using
binders that range over multiple sequences as
in this example is what order should the re-
sulting sequence be? Unless, there is a sepa-
rate specification of ordering, the we assume
that the resulting sequence is ordered by the
natural generalization of the ordering of the
sequences involved. For example with two
sequences the element (s1, t1) comes before
(s2, t2) if an only if in S, s1 comes before s2
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or s1 = s2 and in T , t1 comes before t2 or
t1 = t2.

Example 4.17. Let S = 〈 0, 1 〉 and T =
〈 a, b 〉.
〈 (x, y) : x ∈ S, y ∈ T 〉 = 〈 (0,’a), (0,’b), (1,’a), (1,’b) 〉 .
Question 4.18. Can you express the Carte-
sian product example by using the single
sequence syntax and the sequence func-
tions that you have learned thus far in this
chapter?
While we presented the syntax for operating

multiple-sequences as a separate syntax, it is
actually expressible using the syntax that we
have seen thus far. To see this consider se-
quence ST ′ = 〈 (0, T ), (1, T ) 〉, which can be
computed by ST ′ = 〈 (x, T ) : x ∈ S 〉. Now
we can map over each element of the sequence ST ′
to obtain what we want, well more or less.
Consider
ST ′′ =

〈
〈 (x, y) : y ∈ z 〉 : (x, z) ∈ ST ′

〉
.
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It is not difficult to see that

ST ′′ = 〈 〈 (0,’a), (0,’b) 〉 , 〈 (1,’a), (1,’b) 〉 〉 .
Thus the only remaining issue is the nesting.
Luckily, that is simple using our flatten
function. Indeed it is easy to see that ST =
flattenST ′′ is the Cartesian product that we
sought after. Putting it all together, we can
express the Cartesion product of S and T as
follows:

flatten 〈 〈 (x, y) : y ∈ z 〉 : (x, z) ∈ 〈 (x, T ) : x ∈ S 〉 〉 .
Or equivalently, we can write the code for this
expression in PML as follows:

1 CartesianProduct = fn (S,T) ⇒
2 flatten (map (fn (x,z) ⇒ map (fn y ⇒ (x,y)) z)
3 (map (fn x ⇒ (x,T)) S))

This example shows the benefits of the sequence
syntax defined so far.

Generalizing this syntax, we can allow es-
sentially any expressions in place of the se-
quences and the expression being mapped, and
also allow filtering over the bound variables.
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Syntax 4.19. Comprehensions for multi-
ple sequences Generalizing this syntax, we
can allow essentially any expressions in
place of the sequences and the expres-
sion being mapped, using expressions e,
es, and et, and in fact any (finitely many)
m ∈ N, while also applying a filter ef
over all bound variables. of them:〈
e : x1 ∈ e1, x2 ∈ e2 . . . , xn ∈ en | ef

〉
.

More generally, we can also allow vari-
able binding involve ranges of natural
numbers, as for example, can be used by
tabulate. Specifically, xi ∈ ei could be
replaced by el ≤ i ≤ eh, where el and eh
are expressions whose values are natural
numbers and i is a variable.
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Example 4.20. Suppose that given two se-
quences S of naturals and T of letters, we
wish to compute the a sequence that pairs
each even element of S with all elements
of T that are vowels.
We can do this simply by adding the filter-
ing predicate orthogonally as follows:

flatten 〈 〈 (x, y) : y ∈ z 〉 : (x, z) ∈ 〈 (x, T ) : x ∈ S | isEven(x) 〉 and isVowel(y) 〉
where the self-explanatory predicate
isEven holds only when the argument
is an even number, and isVowel holds
only when the argument is a vowel.
〈 (x, y) : x ∈ S, y ∈ T | isEven(x) 〉

Example 4.21.

〈 a× b : a ∈ 〈 1, 2, 3 〉 , b ∈ 〈 4, 5 〉 〉
multiplies all pairs and evaluates to:

〈 4, 5, 8, 10, 12, 15 〉
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Example 4.22. Let’s say we want to gen-
erate all contiguous subsequences of a se-
quence A. Each sequence can start at any
position 0 ≤ i < |A|, and end at any posi-
tion i ≤ j < |A|. We can do this with the
following pseudocode:

〈A 〈 i, . . . , j 〉 : 0 ≤ i < |A|, i ≤ j < |A| 〉 ,
which is equivalent to:

flatten(tabulate
(fn i⇒ tabulate

(fn l⇒ subseq(A, i, l + 1))
(length(A)− i))

(length A))

Here we see that syntax based on compre-
hensions can be quite convenient.

The functions that we have described so far
are summarized in Abstract Data type ADT 4.5.
It relies on the definition of of sequences given
in Definition 4.1 (i.e. mappings from inte-
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gers to elements). We will add more func-
tions later. The exact list of functions does not
matter very much since many functions can
be implemented with others. We already gave
an example of how map can be implemented
with tabulate. However, we have to be
careful that the implementations are efficient.
This sometimes depends on the cost model.
For map implemented with tabulate, for
example, the implementation is asymptotically
efficient for array sequences but not for tree
sequences.

4.3 Cost Specification

We now consider the cost specifications for
the sequence ADT. We consider three cost spec-
ifications, which we refer to as the array se-
quence, list sequence, and tree sequence cost
specifications. The names roughly indicate the
class of implementation that can achieve these
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cost bounds, but there might be many specific
implementations that match the bounds. For
examples for the tree sequence specification
there are many types of trees that might be
used. To use the cost bounds, you don’t need
to know the specifics of how these implemen-
tations work. The reason to have more than
one specification is that in different usages dif-
ferent specifications are better. We say that
one cost specification dominates another if
for every function its asymptotic costs are no
higher. None of the three specifications we
give dominates another.

The costs for ArraySequences is given in Cost
Specification 4.3. The first thing to notice is
that in the cost specification the function nth
takes constant work and span. This is because
in an array we can access an arbitrary element
in constant time. The work and span for singleton,
and length are also constant, which should
not be surprising. For the three functions tabulate,
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Cost Specification 4.23 (Array Sequences).

ArraySequence
Work Span

length(A) 1 1
singleton(v) 1 1
nth(A, i) 1 1

map f S 1 +
∑
s∈S

W (f(s)) 1 + max
s∈S

S(f(s))

tabulate f n 1 +
n∑

i=0

W (f(i)) 1 +
n

max
i=0

S(f(i))

filter p S 1 +
∑
s∈S

W (p(s)) log |S|+max
s∈S

S(p(s))

subseq(S, s, l) 1 1
append(S1, S2) |S1|+ |S2| 1
flatten(S) ||S||+ |S| log |S|
update(P, S) |P |+ |S| 1
inject(S, P ) |P |+ |S| 1

The array sequence cost specification. ||S|| =∑X∈S |S|. All entries are big-O.

map, and filter the work includes the sum
of the work of applying f at each position, as
we would expect from the definition of work.
We also have to add 1 for the overhead of ap-
plying each function. In all three functions it
is possible to apply the function f in parallel
since there is no dependence among the po-
sitions. Therefore the span of the functions
is the maximum of the span of applying f at
each position. For map and tabulate there
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is again a constant overhead, but for filter
there is a logarithmic overhead. We will see
why when we cover the implementation, but
it has to do with packing the remaining ele-
ments into contiguous locations in an array.

The subseq function has constant work.
We will justify this cost in the implementation
section. The append, flatten, update
and inject functions all require work pro-
portional to the length of the sequences they
are working on, but can be implemented in
parallel so the span is at most logarithmic in
the length. It might see surprising that update
takes work proportional to the size of the in-
put sequence S since updating a single ele-
ment should take constant work. The reason
is that the interface is purely functional so that
the input sequence needs to be copied–we are
not allowed to update the old copy. In a later
section we will define single-threaded array
sequences that will allow us under certain re-
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strictions to update a sequence in constant work.

Example 4.24. As an example of map we
have

W (
〈
i2 : 0 ≤ i < n

〉
) = O(1 +

n−1∑
0=1

O(1)) = O(n)

S(
〈
i2 : 0 ≤ i < n

〉
) = O(1 +

n−1
max
i=0

O(1)) = O(1)

given that the work, and hence span, for
i2 is O(1). As an example of filter we
have:

W (〈x ∈ S | x < 27 〉) = O(1 +

|S|−1∑
i=0

O(1)) = O(|S|)

S(〈x ∈ S | x < 27 〉) = O(log |S| + |S|−1
max
i=0

O(1)) = O(log |S|)
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Example 4.25. As a more involved exam-
ple we consider the code from Exam-
ple 4.22:

e = 〈A 〈 i, . . . , j 〉 : 0 ≤ i < |A|, i ≤ j < |A| 〉 ,
which extracts all contiguous subse-
quences from the sequence A. Recall that
the notations is equivalent to a nested
tabulate first over the indices i, and
then inside over the indices j. The re-
sults are then flattened. The nest-
ing of the tabulates allows all the calls to
A 〈 i, . . . , j 〉 (i.e., subseq) to run in par-
allel. Let n = |A|. There are a total of

n∑
i=1

i = n(n + 1)/2 = O(n2)

contiguous subsequences and hence that
many calls to subseq . Each call takes
constant work and span according to the
cost specifications. The overall work for
the subsequences is therefore O(n2). The
overall span is O(1) since the span of the
inner tabulate is the maximum over
the spans of the subseqs, which is O(1),
and the outer tabulate is the maximum
over those, which is again O(1).
The flatten at the end requires O(n2)
work and O(log n) span , since ||S|| =
n(n + 1)/2 = O(n2), and |S| = n. We
therefore have in total that

W (e) = O(|A|2)

S(e) = O(log |A|)
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Cost Specification 4.26 (Tree Sequences).

TreeSequence
Work Span

length(S) 1 1
singleton(v) 1 1
nth(S, i) log |S| log |S|

tabulate f n 1 +
n∑

i=0

W (f(i)) log n+
n

max
i=0

S(f(i))

map f S 1 +
∑
s∈S

W (f(s)) log |S|+max
s∈S

S(f(s))

filter f S 1 +
∑
s∈S

W (f(s)) log |S|+max
s∈S

S(f(s))

subseq(S, s, l) log(|S|) log(|S|)
append(S1, S2) 1 + | log(|S1|/|S2|)| 1 + | log(|S1|/|S2|)|
flatten(S) log(||S||)|S| log(||S||+ |S|)
inject(P, S) (|P |+ |S|) log |S| log(|S|+ |P |)

The Tree Sequence cost specification. Again, ||S|| = ∑
X∈S |S| and all entries are

big-O.

The costs for TreeSequences is given in Cost
Specification 4.3. The first thing to notice is
that the cost of the nth function is no longer
constant. Instead it has logarithmic work and
span. This is because TreeSequences use a
balanced tree, and require following a path from
the root to a leaf to find the nth element. Such
a path has length O(log |S|). Although nth
does more work with TreeSequences, append
does Instead of requiring linear work, the work
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of append with TreeSequences is proportional
to the log of the ratio of the size of the larger
sequence to the size of the smaller one smaller
one. For example if the two sequences are
the same size, then append takes O(1) work.
On the other hand if one is length n and the
other 1, then the work is O(log n). The work
of update is also less with TreeSequences
than within ArraySequences. More details on
how these cost arise is given later.

Such a tradeoff between implementations, where
some functions are cheaper with one cost spec-
ification and others with another, is common
in data types. The user can decide to use an
implementation that matches either specifica-
tion, and this decisions should be based on
which specification leads to better asymptotic
performance for their algorithm. For exam-
ple if making many calls to nth but no calls
to append, then the user might want to use
the ArraySequence specification, while if the
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mostly use append and update, then TreeSe-
quences might be better.

The work and span for other functions such
map, tabulate and filter are approxi-
mately the same for ArraySequences and TreeSe-
quences, except there is an extra logarithmic
term in the span for map and tabulate in
TreeSequences.

Exercise 4.27. Earlier we showed how to
implement map using tabulate. De-
cide whether this implementation pre-
serves asymptotic costs for an ArraySe-
quence, and then for TreeSequence.

4.4 An Example: Binary Search

1 fun kthSmallest(A,B,k) =
2 % need base cases
3 let
4 val mA = |A|/2
5 val mB = |B|/2
6 in
7 case (k ≤ mA +mB, A[mA] < B[mB]) of
8 (false,false) ⇒ kthSmallest(A,B[m_a+1,|A|-1],k-m_a-1)
9 | (false,true) ⇒ kthSmallest(A[m_b+1,|B|-1],B,k-m_b-1)

10 | (true,false) ⇒ kthSmallest(A[0,m_a-1],B,k)
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11 | (true,true) ⇒ kthSmallest(A,B[0,m_b-1],k)
12 end

4.5 An Example: Primes

We now give some more involved examples of
how to use sequences and analyze and com-
pare costs. We are of course interested in an-
alyzing both the work and the span. As usual,
the ratio of the two will give us the parallelism
of the algorithm. The examples we use are all
algorithms for the the following problem:

Problem 4.28 (Primes). The primes prob-
lem is given an integer n to find all prime
numbers up to, and including n.
Recall that a integer i is a prime if it has no

positive divisors other than 1 and itself. We
note that if an integer n is not prime, then
it must have a divisor that is at most d√n e
since for any i× j = n, either i or j has to be
less than or equal to d√n e. We therefore can
check if n is a prime by checking whether any
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j, 2 ≤ j ≤ d√n e is a divisor of n. This can
be checked as follows:

Algorithm 4.29.
isPrime(n) = (| 〈 2 ≤ j ≤ d√n e | n mod j = 0 〉 | = 0)

The length of the sequence is simply the num-
ber of j that divide n. If that is zero, then n is a
prime. We now consider the work and span of
this function based on the array sequence cost
specification. The function runs a tabulate to
generate a sequence of length d√n e and then
filters it. We note that the work for evaluating
n mod j = 0 is constant for each j. With this
we can write down the equation:

W (|
〈

2 ≤ j ≤
⌈√

n
⌉
| i mod j = 0

〉
|) = O

1 +

d√n e∑
j=2

O(1)

 = O(
√
n)

for work, since we just sum the cost of ap-
plying mod to each j, and then add in 1, as
given in Cost Specification ?? for filter.
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Similarly we have for span:

W (|
〈

2 ≤ j ≤
⌈√

n
⌉
| i mod j = 0

〉
|) = O

(
log(
√
n) +

d√n e
max
j=2

O(1)

)
= O(log n)

Now that we can determine if an integer is a
prime, we can just check by brute force for all
integers between 2 and n if they are primes.
This leads to the following algorithm.

Algorithm 4.30.
primes(n) = 〈 1 ≤ i ≤ n | isPrime(i) 〉

Again we use Array Sequence to analyze its
work and span. We have:

W (〈 2 ≤ i ≤ n | isPrime(i) 〉) = O

 n∑
i=2

W (isPrime(i))


= O(

 n∑
i=2

O(
√
i)


= O(n3/2)
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and the span is:

S(〈 2 ≤ i ≤ n | isPrime(i) 〉) = O

(
log n +

n
max
i=2

S(isPrime(i))

)
= O

(
log n +

n
max
i=2

O(log i)

)
= O(log n)

The parallelism is hence P (n) = W (n)/S(n) =

n3/2/ log n. This is plenty of parallelism. The
work for the algorithm, however, can be im-
proved significantly. The observation is that
an integer j close to d√n e only divide a very
small percentage of the integers between 2 and
n. In particular 1 out of about d√n e of them.
It is therefore wasteful to check every integer
to see if j divides it. Instead we can generate
all multiples of j up to n. In fact we can do
this for every 2 ≤ j < d√n e, and knock out
all of their multiples.

Question 4.31. How do we knock out the
multiples?

January 23, 2015 (DRAFT, PPAP)



102 CHAPTER 4. SEQUENCES

To do this we can start with a Boolean se-
quence of length n with all true values, and
then write a false into all the multiples of the
js. All the writes can be done in parallel using
an inject. This can be implemented with
the following algorithm:

Algorithm 4.32.
function primes(n) =

let
val sieves = 〈 (i× j,false) : 2 ≤ i ≤ d√n e , 1 ≤ j ≤ dn/ie 〉
val R = inject({true : 0 ≤ i ≤ n},sieves)

in
〈 i : 2 ≤ i ≤ n | R[i] 〉

end

The work and span for calculating sieves
is similar to the analysis for finding all subse-
quences in Example 4.25. In particular gener-
ating each multiple takes constant work and
span since it just a multiply. The the total
work is proportional to the total number of
such sieves, i.e. the length of sieves, which
we analyze below. The span is O(log n) be-
cause of the flatten implied by the syntax. The
work of inject is also proportional to the
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number of sieves, and its span is constant. The
work of the filter (Line 6) is proportional to n,
and the span is O(log n). Therefore the total
work is proportional to the length of sieves,
which is larger than n, and the total span is
O(log n).

To calculate the number of sieves (length of
sieves) we can add up the number of multi-
ples each j from 2 to d√n e have. This gives:

|sieves| =

d√n e∑
i=2

⌈n
i

⌉

≤ (n + 1)

d√n e∑
i=2

1

i

= (n + 1)H(
⌈√

n
⌉
)

≤ (n + 2) lnn1/2

=
n + 2

2
lnn
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HereH(n) is the nth harmonic number, which
is known to be bounded below by lnn and
above by lnn+1. We therefore have: W (n) =
O(n log n) and S(n) = O(log n). This is a sig-
nificant improvement in the work.

The work can actually be improved by notic-
ing that j is not a prime we do not have to use
its multiples. This is because one of its divi-
sors will include all its multiples. For example
we need not consider the multiples of 6 since
all multiples of 6 are also multiples of 2 and of
3. The question is how do we generate just the
primes less than d√n e for the filters. Well this
can be done recursively, giving the following
algorithm.

Algorithm 4.33.
function primes(n) =
if (n < 2) then 〈 〉
else let

val P = primes(d√n e)
val sieves = 〈 (p× i,false) : p ∈ P, 1 ≤ i ≤ dn/pe 〉
val R = inject({true : 0 ≤ i ≤ n},sieves)

in
〈 i : 2 ≤ i ≤ n | R[i] 〉

end
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We leave the analysis of this algorithm as an
exercise, but we state without justification that
it has O(n log log n) work and O(log n) span.

4.6 Iterate, Reduce and Scan

So far we have described functions that do
something with each element of a sequence.
Each calculation is independent. What if we
want, for example to sum the elements of a
sequence. We clearly cannot do this with a
map, tabulate, or filter. Here we de-
fine three functions for working over the el-
ements of a sequence: iterate, reduce,
and scan. The first is sequential and the other
two are parallel. We start with iterate.

Iterate.

it·er·ate (Merriam-Webster) :
to say or do again, or again and again
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Iteration is a key concept in algorithm design,
as well as many other areas of computer sci-
ence. Iterative design, for example, is one
of the most important concepts in designing
good algorithms or programs—i.e. the idea
of repeatedly improving and simplifying your
algorithm or program. The term iteration im-
plies that a sequence of steps is taken one after
another, each taking the state from the previ-
ous step and updating it for the next step. It is
therefore an inherently sequential concept.

In the context of sequences we use iterate
to mean to start with an initial state and a se-
quence and on each step to update the state
based on the next element of the sequence.
The iteration therefore takes as many steps as
the length of the sequence. More concretely
the iterate function has the form

iterate f v S

where S is a sequence, v is an initial state, and
f is a function mapping a state and an element
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of S to a new state. As such iterate takes
|S| steps starting with the first element of S
and ending with the last. For a sequence of
length 5, for example, it is equivalent to :

f (f (f (f (f (v, S[0]), S[1]), S[2]), S[3]), S[4])

If S is an α sequence and the states are of type
β then f must have type β × α → β since it
maps a state and an element to a new state.

Example 4.34.
iterate ’+’ 0 〈 2, 5, 1, 6 〉

would return 14 since it starts with the in-
teger state 0 and then one by one adds the
integer elements 2, 5, 1 and 6 of S to the
state. Similarly

iterate ’-’ 0 〈 2, 5, 1, 6 〉

would return (((0−2)−5)−1)−6 = −14.

The function can be implemented as:
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Algorithm 4.35.
1 fun iterate f v S =
2 let
3 fun iter(v, i) =
4 if (i = |S|) then v
5 else iter(f(v, S[i]), i+ 1)
6 in iter(v, 0) end

This algorithm uses recursion to go over the
elements one by one.

Parentheses matching. As an example of how to use it-
eration, and specifically iterate, consider
the problem of finding whether a string (se-
quence) of left and right parentheses is prop-
erly matched. We say a such a string is matched
if it can be described recursively as

p = 〈 〉 | p p | ‘‘(’’ p ‘‘)’’
where 〈 〉 is the empty sequence, p p indicates
appending two strings of matched parentheses
(recursively defined), and ‘‘(’’ p ‘‘)’’
indicates the string starting with ‘‘(’’ fol-
lowed by a matched string p followed by ‘‘)’’.
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Example 4.36. The string ‘‘(())()’’
is matched since it can be decomposed as:

@
/ \

@ @ @ @
/ | \ / | \
( @ @ ) ( <> )
/ | \
( <> )

where @ indicates appending.
The‘‘())(()’’, however, is not
matched.

Problem 4.37 (Matched Parentheses). The
matched parenthesis problem is given
a string of parentheses to determined
whether it is matched.
There are a variety of algorithms for solving

this problem. Here we go over a linear-work
sequential algorithm based on iterate. In
the next chapter we go over a divide-and-conquer
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algorithm that requires no more work asymp-
totically, but is highly parallel. Sequentially
we can solve the problem by starting at the
beginning of the sequence with a counter set
to zero and iterating through the elements one
by one. If we ever see a left parenthesis we in-
crement a count and whenever we see a right
parenthesis we decrement the count. A se-
quence of parentheses can only be matched if
the count ends at 0 since being matched re-
quires that there are an equal number of right
and left parentheses. However ending with
a count of 0 is not adequate since the string
‘‘))((’’ has count 0 but is obviously not
matched. It also has to be the case that the
count can never go below 0 during the itera-
tions. Proving this is left as an exercise, and
the observation leads to the following algo-
rithm:
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Algorithm 4.38.
1 fun matchedParen(S) =
2 let
3 fun count(s,c) =
4 case (s,c) of
5 (None,_) ⇒ None
6 | (Some(n),)) ⇒ if (n = 0) then None else Some(n− 1)
7 | (Some(n),() ⇒ Some(n+ 1)
8 in
9 (iterate count Some(0) S) = Some(0)

10 end

The algorithm starts with the state (counter)
Some(0) and increments or decrements the counter
on a left and right parenthesis, respectively. If
the iterations ever encounter a right parenthe-
sis when the count is zero, this indicates the
count will go below zero, and at this point the
state is changed to None, which is propagated
through the rest of the iterations to the result.
Therefore at the end if the state is Some(0)
then the counter never went below zero and
ended up at zero so the parentheses must be
matched.

Reduce.
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re·duce (Merriam-Webster) :
1 a: to draw together or cause to con-
verge : consolidate <reduce all the ques-
tions to one>

As we noted the iterate function is in-
herently sequential since it goes over the el-
ements of a sequence iteratively one by one.
However, for the example of summing a se-
quence of values, you might notice that it is
possible to perform the sum in parallel. For
example we might first pairwise add the el-
ement in odd positions of the sequence with
their neighboring elements in even positions.
This can then be repeated, as in the following
diagram for iterate ’+’ 0 〈 2, 5, 1, 6 〉

2 5 1 6
7 7 step 1
14 step 2

For a sequence with initial length n such a
process will complete after dlog ne steps.
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So what is it about addition that allows us to
do it in parallel. Well it is the fact that addition
is associative. Recall that a binary function
is associative if and only if f (x, f (y, z)) =
f (f (x, y), z) for all x, y, z (restricted to the
type of the function, e.g. the integers). To take
advantage of parallelism, the reduce func-
tion is defined in the same way as iterate
but requires that the the function f is associa-
tive. It also requires that the initial state v is a
left identity for f—a value v of type α is a left
identity of f if f (v, x) = x for all x ∈ α. The
associativity condition forces f to have type
(α× α)→ α.

There are many functions that are associa-
tive. You probably already known that addi-
tion and multiplication are associative, with
0 and 1 as their (left) identities, respectively.
Minimum and maximum are also associative
with left identities ∞ and −∞ respectively.
The append function on sequences is also
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associative, with left identity being the empty
sequence. Set union and matrix multiply are
associative, with the empty set and the set of
all possible elements as the identity, respec-
tively. There are many other functions that are
associative.

Example 4.39.
reduce append 〈‘‘another’’,‘‘way’’,‘‘to’’,‘‘flatten’’ 〉

would return
‘‘anotherwaytoflatten’’.

The function reduce is purely more restric-
tive than iterate since it is effectively the same
function but with extra restrictions on its in-
put (i.e. that f be associative, and I is a left
identity). You might asks why introduce an-
other function. The reason is that reduce
can be implemented to run in parallel while
iterate cannot.

Scan.
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scan (Merriam-Webster) :
to look at (something) carefully usually
in order to find someone or something

A function closely related to reduce is scan.
It has the interface:

scan f I S : (α×α→ α)→ α→ α seq → (α seq×α)

As with reduce, when the function f is
associative, the scan function returns the sum
with respect to f of each prefix of the input
sequence S, as well as the total sum of S.
Hence the function is often called the prefix
sums function (or problem). For a function f
which is associative it can be defined as fol-
lows:

Algorithm 4.40.
1 fun scan f I S =
2 (〈reduce f I (S 〈 0, . . . , l − 1 〉 : 0 ≤ l < n) 〉
3 reduce f I S)

This uses our pseudocode notation and the
〈reduce f I (take(S, i)) : i ∈ 〈 0, . . . , n− 1 〉 〉
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indicates that for each i in the range from 0 to
n− 1 apply reduce to the first i elements of
S. For example,

scan + 0 〈 2, 1, 3 〉 = (〈 reduce + 0 〈 〉 , reduce + 0 〈 2 〉 , reduce + 0 〈 2, 1 〉 〉
reduce + 0 〈 2, 1, 3 〉)

= (〈 0, 2, 3 〉 , 6)

Using a bunch of reduces, however, is not an
efficient way to calculate the partial sums.

Exercise 4.41. What is the work and span
for the scan code shown above, assuming
f takes constant work.

We will soon see how to implement a scan
with the following bounds:

W (scan f I S) = O(|S|)
S(scan f I S) = O(log |S|)

assuming that the function f takes constant
work. For now we will consider some useful
applications of scans.
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Note that the scan function takes the “sum”
of the elements before the position i. Some-
times it is useful to include the value at posi-
tion i. We therefore also will use a version of
such an inclusive scan.

scanI + 0 〈 2, 1, 3 〉 = 〈 2, 3, 6 〉
This version does not return a second result
since the total sum is already included in the
last position.

4.6.1 The MCSS Problem Algorithm 5: Using Scan

Let’s consider how we might use the scan func-
tion to solve the Maximum contiguous subse-
quence (MCSS) problem. Recall, this prob-
lem is given a sequence S to find:

max
0≤i≤j≤n

(

j−1∑
k=i

Sk) .
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As a running example for this section consider
the sequence

S = 〈 1,−2, 3,−1, 2,−3 〉 .
What if we do an inclusive scan on our input

S using addition? i.e.:

X = scanI + 0 S = 〈 1,−1, 2, 1, 3, 0 〉
Now for any jth position consider all posi-

tions i < j. To calculate the sum from im-
mediately after i to j all we have to do is re-
turn Xj − Xi. This difference represents the
total sum of the subsequence from i + 1 to j
since we are taking the sum up to j and then
subtracting off the sum up to i. For example
to calculate the sum between the −2 (location
i + 1 = 1) and the 2 (location i = 4) we take
X4−X0 = 3−1 = 2, which is indeed the sum
of the subsequence 〈−2, 3,−1, 2 〉.

Now consider how for each j we might cal-
culate the maximum sum that starts at any i ≤
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j and ends at j. Call it Rj. This can be calcu-
lated as follows:

Rj =
j

max
i=0

j∑
k=i

Sk

=
j

max
i=0

(Xj −Xi−1)

= Xj +
j

max
i=0

(−Xi−1)

= Xj +
j−1
max
i=0

(−Xi)

= Xj −
j−1
min
i=0

Xi

The last equality is because the maximum of a
negative is the minimum of the positive. This
indicates that all we need to know is Xj and
the minimum previous Xi, i < j. This can be
calculated with a scan using minimum as the
binary combining function. Furthermore the
result of this scan is the same for everyone, so
we need to calculate it just once. The result of
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the scan is:
(M, ) = scan min 0X = (〈 0, 0,−1,−1,−1,−1 〉 ,−1) ,

and now we can calculate R:
R =

〈
Xj −Mj : 0 ≤ j < |S|

〉
= 〈 1,−1, 3, 2, 4, 1 〉 .

You can verify that each of these represents
the maximum contiguous subsequence sum end-
ing at position j.

Finally, we want the maximum string ending
at any position, which we can do with a reduce
using max. This gives 4 in our example.

Putting this all together we get the following
very simple algorithm:

Algorithm 4.42 (Scan-based MCSS).
1 function MCSS(S) =
2 let
3 val X = scanI + 0 S
4 val (M,_) = can min 0 X
5 val Y = 〈Xj −Mj : 0 ≤ j < |S| 〉
6 in
7 max(Y )
8 end

Given the costs for scan and the fact that ad-
dition and minimum take constant work, this
algorithm has O(n) work and O(log n) span.
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4.6.2 Copy Scan

Previously, we used scan to compute partial
sums to solve the maximum contiguous sub-
sequence sum problem and to match paren-
theses. Scan is also useful when you want
pass information along the sequence. For ex-
ample, suppose you have some “marked” el-
ements that you would like to copy across to
their right until they reach another marked el-
ement. One way to mark the elements is to
use options.

That is, suppose you are given a sequence of
type α option seq . For example

〈None, Some(7), None, None, Some(3), None 〉
and your goal is to return a sequence of the
same length where each element receives the
previous SOME value. For the example:

〈None, None, Some(7), Some(7), Some(7), Some(3) 〉

Using a sequential loop or iter would be
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easy. How would you do this with scan?
If we are going to use a scan directly, the

combining function f must have type

α option× α option→ α option

How about
1 fun copy(a, b)
2 case b of
3 Some(_) ⇒ b
4 | None ⇒ a

What this function does is basically pass on
its right argument if it is Some and otherwise
it passes on the left argument. To be used in
a scan it needs to be associative. In particular
we need to show that copy(x,copy(y, z)) =
copy(copy(x, y), z) for all x, y and z. There
are eight possibilities corresponding to each
of x, y and z being either Some or None. For
the cases that z = Some(c) it is easy to ver-
ify that that either ordering returns z. For the
cases that z = None and y = Some(b) one
can verify that both orderings give y, for the
cases that y = z = None and x = Some(a)
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they both return x, and for all being None ei-
ther ordering returns None.

There are many other applications of scan in
which more involved functions are used. One
important case is to simulate a finite state au-
tomaton.

4.6.3 Contraction and Implementing Scan

Now let’s consider how to implement scan
efficiently and at the same time apply one of
the algorithmic techniques from our toolbox
of techniques: contraction. Throughout the
following discussion we assume the work of
the binary operator is O(1). As described ear-
lier a brute force method for calculating scans
is to apply a reduce to all prefixes. This re-
quires O(n2) work and is therefore not work-
efficient since we can do it in O(n) work se-
quentially.

Beyond the wonders of what it can do, a
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surprising fact about scan is that it can be
accomplished efficiently in parallel, although
on the surface, the computation it carries out
appears to be sequential in nature. At first
glance, we might be inclined to believe that
any efficient algorithms will have to keep a cu-
mulative “sum,” computing each output value
by relying on the “sum” of the all values be-
fore it. It is this apparent dependency that
makes scan so powerful. We often use scan
when it seems we need a function that depends
on the results of other elements in the sequence,
for example, the copy scan above.

Suppose we are to run plus_scan (i.e. scan
(op +)) on the sequence 〈 2, 1, 3, 2, 2, 5, 4, 1 〉.
What we should get back is

(〈 0, 2, 3, 6, 8, 10, 15, 19 〉 , 20)

We will use this as a running example.
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Divide and Conquer: We first consider a divide-and-
conquer solution. We can do this by splitting
the sequence in half, solving each half and
then trying to put the results together. The
question is how do we put the results together.
In particular lets say the scans on the two halves
return (Sl, tl) and (Sr, tr), which would be (〈 0, 2, 3, 6 〉 , 8)
and (〈 0, 2, 7, 11 〉 , 12) in our example. Note
that Sl already gives us the first half of the so-
lution.

Question 4.43. How do we get the second
half?

To get the second half, note that in calculat-
ing Sr in the second half we started with the
identity instead of the sum of the first half, tl.
Therefore if we add the sum of the first half,
tl, to each element of Sr, we get the desired
result. This leads to the following algorithm:
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Algorithm 4.44 (Scan using divide and
conquer).

1 function scan f I S =
2 case showt(S) of
3 EMPTY ⇒ (〈 〉 , I)
4 | ELT(v) ⇒ (〈 I 〉 , v)
5 | NODE(L,R) ⇒ let
6 val ((Sl, tl), (Sr, tr)) = (scan f I L || scan f I R)
7 val Xr = 〈 f(tl, y) : y ∈ Sr 〉
8 in
9 (append(Sl, Xr), tl + tr)

10 end

One caveat about this algorithm is that it only
works if I is really the “identity” for f , i.e.
f (I, x) = x, although it can be fixed to work
in general.

We now consider the work and span for the
algorithm. Note that the joining step requires
a map to add tl to each element of Sr, and
then an append. Both these take O(n) work
and O(1) span, where n = |S|. This leads to
the following recurrences for the whole algo-
rithm:

W (n) = 2W (n/2) + O(n) ∈ O(n log n)

S(n) = S(n/2) + O(1) ∈ O(log n)
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Although this is much better thanO(n2) work,
we can do better.

Contraction: To compute scan in O(n) work in
parallel, we introduce a new inductive tech-
nique common in algorithms design: contrac-
tion. It is inductive in that such an algorithm
involves solving a smaller instance of the same
problem, much in the same spirit as a divide-
and-conquer algorithm. But with contraction,
there is only one subproblem. In particular,
the contraction technique involves the follow-
ing steps:

1. Contract the instance of the problem to a
smaller instance (of the same sort).

2. Solve the smaller instance recursively.
3. Use the solution to help solve the original

instance.

The contraction approach is a useful tech-
nique in algorithm design in general but for
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various reasons it is more common in parallel
algorithms than in sequential algorithms. This
is usually because both the contraction and ex-
pansion steps can be done in parallel and the
recursion only goes logarithmically deep be-
cause the problem size is shrunk by a constant
fraction each time.

We’ll demonstrate this technique first by ap-
plying it to a slightly simpler problem, reduce.
To begin, we have to answer the following
question: How do we make the input instance
smaller in a way that the solution on this smaller
instance will benefit us in constructing the fi-
nal solution?

The idea is simple: We apply the combining
function pairwise to adjacent elements of the
input sequence and recursively run reduce
on it. In this case, the third step is a “no-op”; it
does nothing. For example on input sequence
〈 2, 1, 3, 2, 2, 5, 4, 1 〉 with addition, we would
contract the sequence to 〈 3, 5, 7, 5 〉. Then we
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would continue to contract recursively to get
the final result. There is no expansion step.

Thought Experiment II: How can we use the same idea
to implement scan? What would be the result
after the recursive call? In the example above
it would be

(〈 0, 3, 8, 15 〉 , 20).

But notice, this sequence is every other ele-
ment of the final scan sequence, together with
the final sum—and this is enough information
to produce the desired final output. This time,
the third expansion step is needed to fill in the
missing elements in the final scan sequence:
Apply the combining function element-wise
to the even elements of the input sequence and
the results of the recursive call to scan.

To illustrate, the diagram below shows how
to produce the final output sequence from the
original sequence and the result of the recur-
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sive call:
Input = h2, 1, 3, 2, 2, 5, 4, 1i

Partial Output = (h0, 3, 8, 15i, 20)

Desired Output = (h0, 2, 3, 6, 8, 10, 15, 19i, 20)

+ + + +

This leads to the following code. The algo-
rithm we present works for when n is a power
of two.

Algorithm 4.45 (Scan Using Contraction,
for powers of 2).

1 function scanPow2 f i s =
2 case |s| of
3 0 ⇒ (〈 〉 , i)
4 | 1 ⇒ (〈 i 〉 , s[0])
5 | n ⇒ let
6 val s′ = 〈 f(s[2i], s[2i+ 1]) : 0 ≤ i < n/2 〉
7 val (r, t) = scanPow2 f i s′

8 in

9 (〈 pi : 0 ≤ i < n 〉 , t), where pi =

{
r[i/2] even(i)

f(r[i/2], s[i− 1]) otherwise.

10 end

4.7 Reduce Function

Recall that reduce function has the interface

reduce f I S : (α×α→ α)→ α→ α seq → α
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When the combining function f is associative—
i.e., f (f (x, y), z) = f (x, f (y, z)) for all x, y
and z of type α—reduce returns the sum
with respect to f of the input sequence S. It
is the same result returned by iter f I S.
The reason we include reduce is that it is
parallel, whereas iter is strictly sequential.
Note, though, iter can use a more general
combining function with type: β × α→ β.

The results of reduce and iter, however,
may differ if the combining function is non-
associative. In this case, the order in which
the reduction is performed determines the re-
sult; because the function is non-associative,
different orderings will lead to different an-
swers. While we might try to apply reduce
to only associative operations, unfortunately
even some functions that seem to be associa-
tive are actually not. For instance, floating
point addition and multiplication are not asso-
ciative. In some languages integer addition is
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also not associative because of the possibility
of overflow, which might raise an exception.

To properly deal with combining functions
that are non-associative, it is therefore impor-
tant to specify the order that the combining
function is applied to the elements of a se-
quence. This order is part of the specification
of the ADT Sequence. In this way, every
(correct) implementation returns the same re-
sult when applying reduce; the results are
deterministic regardless of what data structure
and algorithm are used.

For this reason, we define a specific combin-
ing tree. In particular we assume reduce is
equivalent to the following code:
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Algorithm 4.46 (Reduce definition).
1 function reduce f I S =
2 let
3 function reduce’(S) =
4 case showt(S) of
5 ELT(v) ⇒ v
6 | NODE(L,R) ⇒ f(reduce(L),reduce(R))
7 in
8 case showt(S) of
9 NONE ⇒ I

10 | _ ⇒ f(I,reduce’(S))
11 end

Recall that showt splits S in half at the
middle. If the length of S is odd, then the left
“half” is one large than the right one.

4.7.1 Divide and Conquer with Reduce

Now, let’s look back at divide-and-conquer al-
gorithms you have encountered so far. Many
of these algorithms have a “divide” step that
simply splits the input sequence in half, pro-
ceed to solve the subproblems recursively, and
continue with a “combine” step. This leads to
the following structure where everything ex-
cept what is in boxes is generic, and what is in
boxes is specific to the particular algorithm.
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1 fun myDandC(S) =
2 case showt(S) of
3 Empty ⇒ emptyVal

4 | Elt(v) ⇒ base (v)
5 | Node(L,R) ⇒ let
6 val (L′, R′) = (myDandC(L) || myDandC(R))
7 in
8 someMessyCombine (L′, R′)

9 end

Algorithms that fit this pattern can be imple-
mented in one line using the sequence reduce
function. Turning a divide-and-conquer algo-
rithm into a reduce-based solution is as sim-
ple as invoking reduce with the following
parameters:

reduce someMessyCombine emptyVal (map base S)

We will take a look two examples where reduce
can be used to implement a relatively sophis-
ticated divide-and-conquer algorithm. Both
problems should be familiar to you.

Algorithm 4: MCSS Using Reduce.

The first example is the Maximum Contigu-
ous Subsequence Sum problem from last lec-
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ture. Given a sequence S of numbers, find the
contiguous subsequence that has the largest
sum—more formally:

mcss(s) = max


j∑
k=i

sk : 1 ≤ i ≤ n, i ≤ j ≤ n

 .

Recall that the divide-and-conquer solution
involved strengthening the problem so it re-
turns four values from each recursive call on
a sequence S: the desired result mcss(S), the
maximum prefix sum of S, the maximum suf-
fix sum of S, and the total sum of S. We will
denote these as M , P , S, T , respectively. We
refer to this strengthened problem as mcss′.
To solve mcss′ we can then use the following
implementations for combine, base, and emptyVal:

fun combine ((ML, PL, SL, TL), (MR, PR, SR, TL)) =
(max(SL + PR,ML,MR),
max(PL, TL + PR),
max(SR, SL + TR),
TL + TR)

fun base(v) = (v, v, v, v)
fun emptyVal = (−∞,−∞,−∞, 0)
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and then solve the problem with:
fun mcss’(S) =
reduce combine emptyVal (map base S)

Question 4.47. Is the MCSS combine func-
tion described above associative?
It turns out that the combine function for

MCSS is associative, as we would expect for
the binary function passed to reduce. In-
deed this is true for the all the combine func-
tions we have used in divide-and-conquer so
far. To prove associativity of the MCSS com-
bine function we could go through all the cases.
However a more intuitive way to see it is to
consider what combine(A,combine(B,C))
and combine(combine(A,B), C) should re-
turn. In particular forA,B andC appearing in
that order, both ways of associating the com-
bines should return the overall maximum con-
tiguous sum, the overall maximum prefix sum,
the overall maximum suffix sum, and the over-
all sum. The divide-and-conquer algorithm
would not be correct if this were not the case.
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Stylistic Notes. We have just seen that we could spell
out the divide-and-conquer steps in detail or
condense our code into just a few lines that
take advantage of the almighty reduce. So
which is preferable, using the divide-and-conquer
code or using reduce? We believe this is a
matter of taste. Clearly, your reduce code will
be (a bit) shorter, and for simple cases easy
to write. But when the code is more compli-
cated, the divide-and-conquer code is easier to
read, and it exposes more clearly the inductive
structure of the code and so is easier to prove
correct.

Restriction. You should realize, however, that this
pattern does not work in general for divide-
and-conquer algorithms. In particular, it does
not work for algorithms that do more than a
simple split that partitions their input in two
parts in the middle. For example, it cannot be
used for implementing quick sort as the divide
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step partitions the data with respect to a pivot.
This step requires picking a pivot, and then fil-
tering the data into elements less than, equal,
and greater than the pivot. It also does not
work for divide-and-conquer algorithms that
split more than two ways, or make more than
two recursive calls.

4.8 Analyzing the Costs of Higher Order Functions

In Section 1 we looked at using reduce to
solve divide-and-conquer problems. In the MCSS
problem the combining function f had O(1)
cost (i.e., both its work and span are constant).
In that case the cost specifications of reduce
on a sequence of length n is simply O(n) (lin-
ear) work and O(log n) (logarithmic) span.

Question 4.48. Does reduce have linear
work and logarithmic span when the bi-
nary function passed to it does not have
constant cost?
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Unfortunately when the function passed to re-
duce does not take constant work, then the
work of the reduce is not necessarily linear.
More generally when using a higher-order func-
tion that is passed a function f (or possibly
multiple functions) one needs to consider the
cost of f .

For map it is easy to find its costs based on
the cost of the function applied:

W (map f S) = 1 +
∑
s∈S

W (f (s))

S(map f S) = 1 + max
s∈S

S(f (s))

Tabulate is similar. But can we do the same
for reduce?

Merge Sort. As an example, let’s consider merge
sort. As you have likely seen from previous
courses you have taken, merge sort is a popu-
lar divide-and-conquer sorting algorithm with
optimal work. It is based on a function merge
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that takes two already sorted sequences and
returns a sorted sequence containing all ele-
ments from both sequences. We can use our
reduction technique for implementing divide-
and-conquer algorithms to implement merge
sort with a reduce. In particular, we can
write a version of merge sort, which we refer
to as reduceSort, as follows:

val combine = merge<
val base = singleton
val emptyVal = empty
fun reduceSort(S) = reduce combine emptyVal (map base S)

where merge< is a merge function that uses
an (abstract) comparison operator <. Note
that merging is an associative function.

Assuming a constant work comparison func-
tion, two sequences S1 and S2 with lengths
n1 and n2 can be merged with the following
costs:

W (merge<(S1, S2)) = O(n1 + n2)

S(merge<(S1, S2)) = O(log(n1 + n2))
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Question 4.49. What do you think the cost
of reduceSort is?

4.8.1 Reduce: Cost Specifications

We want to analyze the cost of reduceSort.
Does the reduction order matter? As men-
tioned before, if the combining function is as-
sociative, which it is in this case, all reduction
orders give the same answer so it seems like it
should not matter.

To answer this question, let’s consider the
sequential reduction order that is used by iter,
as given by the following code.

fun iterSort(S) =
iterate merge< (empty) (map singleton S)

Since the merge is associative this is function-
ally the same as reduceSort, but will se-
quentially add the elements in one after the
other. On input x = 〈x1, x2, . . . , xn 〉, the
algorithm will first merge 〈 〉 and 〈x1 〉, then
merge in 〈x2 〉, then 〈x3 〉, etc.
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With this order merge< is called when its
left argument is a sequence of varying size be-
tween 1 and n− 1, while its right argument is
always a singleton sequence. The final merge
combines (n − 1)-element with 1-element se-
quences, the second to last merge combines
(n− 2)-element with 1-element sequences, so
on so forth. Therefore, the total work for an
input sequence S of length n is

W (iterSort S) ≤
n−1∑
i=1

c · (1 + i) ∈ O(n2)

since merge on sequences of lengths n1 and
n2 has O(n1 + n2) work.

Question 4.50. Can you see what algo-
rithm iterSort implements?

Using this reduction order the algorithm is
effectively working from the front to the rear,
“inserting” each element into a sorted prefix
where it is placed at the correct location to
January 23, 2015 (DRAFT, PPAP)



4.8. ANALYZING THE COSTS OF HIGHER ORDER FUNCTIONS 143

maintain the sorted order. This corresponds
to the well-known insertion sort.

We can also analyze the span of iterSort.
Since we iterate adding in each element af-
ter the previous, there is no parallelism be-
tween merges, but there is parallelism within
a merge. We can calculate the span as

S(iterSort x) ≤
n−1∑
i=1

c · log(1 + i) ∈ O(n log n)

since merge on sequences of lengths n1 and
n2 has O(log(n1 + n2)) span. This means our
algorithm does have a reasonable amount of
parallelism, W (n)/S(n) = O(n/ log(n)), but
the real problem is that it does much too much
work.

Question 4.51. Can you think of a way to
improve our bound by using a different re-
duction order with the merge function?
In iterSort, the reduction tree is unbal-

anced. We can improve the cost by using a
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balanced tree instead.
For ease of exposition, let’s suppose that the

length of our sequence is a power of 2, i.e.,
|x| = 2k. Now we lay on top the input se-
quence a perfect binary tree1 with 2k leaves
and merge according to the tree structure.

Example 4.52. As an example, the merge
sequence for |x| = 23 is shown below.

x1 x2 x3 x4 x5 x6 x7 x8

= merge

What would the cost be if we use a perfect
tree?

At the bottom level where the leaves are,
there are n = |x| nodes with constant cost
each.

Stepping up one level, there are n/2 nodes,
1This is simply a binary tree in which every node either has exactly 2 children or is a leaf, and all leaves are at

the same depth.
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each corresponding to a merge call, each cost-
ing c(1+1). In general, at level i (with i = 0 at
the root), we have 2i nodes where each node
is a merge with input two sequences of length
n/2i+1.

Therefore, the work of such a balanced tree
of merge<’s is the familiar sum

≤
log n∑
i=0

2i · c
( n

2i+1
+

n

2i+1

)
=

log n∑
i=0

2i · c
(n

2i

)
This sum, as you have seen before, evaluates
to O(n log n).

Merge Sort. In fact, this algorithm is essentially
the merge sort algorithm. We can use our re-
duction technique for implementing divide-and-
conquer algorithms to implement merge sort
with a reduce.
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In particular, we can write a version of merge
sort, which we refer to as reduceSort, as fol-
lows:

1 val combine = merge<
2 val base = singleton
3 val emptyVal = empty
4 fun reduceSort(S) = reduce combine emptyVal (map base S)

where merge< is a merge function that uses
an (abstract) comparison operator <.
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Summary 4.53. A brief summary of a few
points.

•When applying a binary function in
reduce, if the function is associative,
the order of applications does not mat-
ter for the final result.

•When applying a binary function in
reduce, the order of applications
does matter when calculating the cost
(work and span), regardless of whether
the function is associative or not.

• Implementing a “reduce” with merge
with a sequential order leads to inser-
tion sort, while implementing with a
balanced tree (parallel order) leads to
merge sort.

The cost of reduce in general. In general, how would we
go about defining the cost of reduce with
higher order functions. Given a reduction tree,
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we’ll first defineR(reduce f I S) as

R(reduce f I S) =
{

all function applications f (a, b) in the reduction tree
}
.

Following this definition, we can state the cost
of reduce as follows:

W (reduce f I S) = O

n +
∑

f (a,b)∈R(f I S)

W (f (a, b))


S(reduce f I S) = O

(
log n max

f (a,b)∈R(f I S)
S(f (a, b))

)
The work bound is simply the total work per-
formed, which we obtain by summing across
all combine functions. The span bound is more
interesting. The log n term expresses the fact
that the tree is at most O(log n) deep. Since
each node in the tree has span at most maxf (a,b) S(f (a, b),
any root-to-leaf path, including the “critical
path,” has at mostO(log nmaxf (a,b) S(f (a, b))
span.

This can be used, for example, to prove the
following lemma:
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Lemma 4.54. For any combine function
f : α × α → α and size function s : α →
R+, if for any x, y,
1. s(f (x, y)) ≤ s(x) + s(y) and
2. W (f (x, y)) ≤ c (s(x) + s(y)) for some

constant c,
then

W (reduce f I S) = O

log |S|
∑
x∈S

(1 + s(x))

 .

Applying this lemma to the merge sort exam-
ple, we have

W (reduce merge< 〈 〉 〈 〈 a 〉 : a ∈ A 〉) = O(|A| log |A|)

4.9 Collect

Thus far we considered two very important
functions on sequences, scan and reduce.

We now look a third function: collect.
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Specification of Collect. Let’s start with something that
you may have heard of.

Question 4.55. Do you know of key-value
stores?
The term key-value store often refers to a

storage systems (which may in on disk or in-
memory) that stores pairs of the form “key x
value.”

Question 4.56. Can you think of a way of
representing a key-value store using a data
type that we know?
We can use a sequence to represent such a

store.

Example 4.57. For example, we may have
a sequence of key-value pairs consisting
of our students from last semester and the
classes they take.

val Data = 〈(‘‘jack sprat’’, ‘‘15-210’’),
(‘‘jack sprat’’, ‘‘15-213’’),
(‘‘mary contrary’’, ‘‘15-210’’),
(‘‘mary contrary’’, ‘‘15-213’’),
(‘‘mary contrary’’, ‘‘15-251’’),
(‘‘peter piper’’, ‘‘15-150’’),
(‘‘peter piper’’, ‘‘15-251’’),
. . .〉
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Note that key-value pairs are intentionally
asymmetric: they map a key to a value. This
is fine because that is how we often like them
to be.

But sometimes, we often want to put together
all the values for a given key.

We refer to this function as a collect.

Example 4.58. We can determine the
classes taken by each student.

val classes = 〈
(‘‘jack sprat’’, 〈‘‘15-210’’,‘‘15-213’’, . . . 〉),
(‘‘mary contrary’’, 〈‘‘15-210’’,‘‘15-213’’,‘‘15-251’’, . . . 〉),
(‘‘peter piper’’, 〈‘‘15-210’’,‘‘15-251’’, . . . 〉),
. . .〉

Collecting values together based on a key
is very common in processing databases. In
relational database languages such as SQL it
is referred to as “Group by”. More generally
it has many applications and furthermore it is
naturally parallel.

We will use the function collect for this
purpose, and it is part of the sequence library.
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Its interface is:

collect : (α×α→ order)→ (α×β) seq→ (α×β seq) seq

The first argument is a function for compar-
ing keys of type α, and must define a total or-
der over the keys.

The second argument is a sequence of key-
value pairs.

The collect function collects all values
that share the same key together into a sequence,
ordering the values in the same order as their
appearance in the original sequence.

4.10 Single-Threaded Array Sequences

In this course we will be using purely func-
tional code because it is safe for parallelism
and enables higher-order design of algorithms
by use of higher-order functions. It is also eas-
ier to reason about formally, and is just cool.
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For many algorithms using the purely func-
tional version makes no difference in the asymp-
totic work bounds—for example quickSort and
mergeSort use Θ(n log n) work (expected case
for quickSort) whether purely functional or im-
perative. However, in some cases purely func-
tional implementations lead to up to aO(log n)
factor of additional work. To avoid this we
will slightly cheat in this class and allow for
benign “effect” under the hood in exactly one
ADT, described in this section. These effects
do not affect the observable values (you can’t
observe them by looking at results), but they
do affect cost analysis—and if you sneak a
peak at our implementation, you will see some
side effects.

The issue has to do with updating positions
in a sequence. In an imperative language up-
dating a single position can be done in “con-
stant time”. In the functional setting we are
not allowed to change the existing sequence,
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everything is persistent. This means that for
a sequence of length n an update can either
be done in Θ(n) work with an arraySequence
(the whole sequence has to be copied before
the update) or Θ(log n) work with a treeSe-
quence (an update involves traversing the path
of a tree to a leaf). In fact you might have no-
ticed that our sequence interface does not even
supply a function for updating a single posi-
tion. The reason is both to discourage sequen-
tial computation, but also because it would be
expensive.

Consider a function update (i, v) S that
updates sequence S at location i with value
v returning the new sequence. This function
would have cost Θ(|S|) in the arraySequence
cost specification. Someone might be tempted
to write a sequential loop using this function.
For example for a function f : α− > α, a
map function can be implemented as follows:

fun map f S =
iter (fn ((i, S′), v) ⇒ (i+ 1,update (i, f(v)) S′))
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(0, S)
S

This code iterates over S with i going from 0
to n−1 and at each position i updates the value
Si with f (Si). The problem with this code
is that even if f has constant work, with an
arraySequence this will do Θ(|S|2) total
work since every update will do Θ(|S|) work.
By using a treeSequence implementation
we can reduce the work to Θ(|S| log |S|) but
that is still a factor of Θ(log |S|) off of what
we would like.

In the class we sometimes do need to update
either a single element or a small number of
elements of a sequence. We therefore intro-
duce an ADT we refer to as a Single Threaded
Sequence (stseq). Although the interface
for this ADT is quite straightforward, the cost
specification is somewhat tricky. To define the
cost specification we need to distinguish be-
tween the latest “copy” of an instance of an
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stseq , and earlier copies. Basically when-
ever we update a sequence we create a new
“copy”, and the old “copy” is still around due
to the persistence in functional languages. The
cost specification is going to give different costs
for updating the latest copy and old copies.
Here we will only define the cost for updat-
ing the latest copy, since this is the only way
we will be using an stseq . The interface and
costs is as follows:
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Work Span
fromSeq(S) : α seq → α stseq O(|S|) O(1)

Converts from a regular sequence to a stseq.
toSeq(ST) : α stseq → α seq O(|S|) O(1)

Converts from a stseq to a regular sequence.
nth ST i : α stseq → int → α O(1) O(1)

Returns the ith element of ST. Same as for seq.
update (i, v) ST : (int × α) → α stseq → α stseq O(1) O(1)

Replaces the ith element of ST with v.
inject I ST : (int × α) seq → α stseq → α stseq O(|I|) O(1)

For each (i, v) ∈ I replaces the ith element of ST with v.

An stseq is basically a sequence but with
very little functionality. Other than converting
to and from sequences, the only functions are
to read from a position of the sequence (nth),
update a position of the sequence (update)
or update multiple positions in the sequence
(inject). To use other functions from the
sequence library, one needs to covert an stseq
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back to a sequence (using toSeq).
In the cost specification the work for both

nth and update is O(1), which is about as
good as we can get. Again, however, this is
only when S is the latest version of a sequence
(i.e. noone else has updated it). The work
for inject is proportional to the number of
updates. It can be viewed as a parallel version
of update.

Now with an stseq we can implement our
map as follows:

Algorithm 4.59.
1 fun map f S =
2 let
3 val S′ = StSeq.fromSeq(S)
4 val R = iter (fn ((i, S′′), v) ⇒ (i+ 1, StSeq.update(i, f(v)) S′′))
5 (0, S′)
6 S
7 in
8 StSeq.toSeq(R)
9 end

This implementation first converts the input
sequence to an stseq , then updates each ele-
ment of the stseq , and finally converts back
to a sequence. Since each update takes con-
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stant work, and assuming the function f takes
constant work, the overall work is O(n). The
span is also O(n) since iter is completely
sequential. This is therefore not a good way
to implement map but it does illustrate that
the work of multiple updates can be reduced
from Θ(n2) on array sequences or O(n log n)
on tree sequences to O(n) using an stseq .

Implementing Single Threaded Sequences. You might be curious
about how single threaded sequences can be
implemented so they act purely functional but
match the cost specification. Here we will just
briefly outline the idea.

The trick is to keep two copies of the se-
quence (the original and the current copy) and
additionally to keep a “change log”. The change
log is a linked list storing all the updates made
to the original sequence. When converting from
a sequence to an stseq the sequence is copied
to make a second identical copy (the current
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copy), and an empty change log is created.
A different representation is now used for the
latest version and old versions of an stseq .
In the latest version we keep both copies (orig-
inal and current) as well as the change log.
In the old versions we only keep the original
copy and the change log. Lets consider what
is needed to update either the current or an
old version. To update the current version we
modify the current copy in place with a side
effect (non functionally), and add the change
to the change log. We also take the previous
version and mark it as an old version remov-
ing its current copy. When updating an old
version we just add the update to its change
log. Updating the current version requires side
effects since it needs to update the current copy
in place, and also has to modify the old ver-
sion to mark it as old and remove its current
copy.

Either updating the current version or an old
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version takes constant work. The problem is
the cost of nth. When operating on the cur-
rent version we can just look up the value in
the current copy, which is up to date. When
operating on an old version, however, we have
to go back to the original copy and then check
all the changes in the change log to see if any
have modified the location we are asking about.
This can be expensive. This is why updating
and reading the current version is cheap (O(1)
work) while working with an old version is
expensive.

In this course we will use stseqs for some
graph algorithms, including breadth-first search
(BFS) and depth-first search (DFS), and for
hash tables.
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Syntax 4.60 (Sequences). Translation from sequence notation to the sequence func-
tions.

Si nth S i
|S| length(S)
〈 〉 empty()
〈 v 〉 singleton(v)
〈 i, . . . , j 〉 tabulate (fn k ⇒ i+ k) (j − i+ 1)
S 〈 i, . . . , j 〉 subseq S (i, j − i+ 1)
〈 e : p ∈ S 〉 map (fn p⇒ e) S
〈 e : 0 ≤ i < n 〉 tabulate (fn i⇒ e) n
〈 p ∈ S | e 〉 filter (fn p⇒ e) S
〈 e1 : p ∈ S | e2 〉 map (fn p⇒ e1) (filter (fn p⇒ e2) S)
〈 e : p1 ∈ S1, p2 ∈ S2 〉 flatten(map (fn p1 ⇒ map (fn p2 ⇒ e) S2) S1)
〈 e1 : p1 ∈ S1, p2 ∈ S2 | e2 〉 flatten(map (fn p1 ⇒ 〈 e1 : p2 ∈ S2 | e2 〉) S1)∑
p∈S

e reduce add 0 (map (fn p⇒ e) S)

n∑
i=k

e reduce add 0 (map (fn i⇒ e) 〈 k, . . . , n 〉)

The
∑

can be replaced with min, max, ∪ and ∩ with the presumed meanings, and by
replacing add and 0 with the appropriate values.

.
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