Chapter 19

Priority Queues

We have already discussed and used priority queues in a few places in this class. We used them
as an example of an abstract data type. We also used them in the priority-first graph search to
implement Dijkstra’s algorithm, and Prim’s algorithm for minimum spanning trees.

Abstract Data Type 19.1 (Meldable Priority Queue). Given a totally ordered set S, a
Meldable Priority Queue (MPQ) is a type T representing subsets of S, along with the
following values and functions (partial list):

empty . T = {}
insert(Q,e) : TxS—T = QU{e}

: . _J(@1) Q={}
deleteMin(Q) : T—-Tx (SU{L}) = { (O\ {minQ}, minQ) otherwise
meld(Ql, QQ) : TxT—T = Ql U Qg

As you might have seen in other classes, a priority queue can also be used to implement an
O(nlogn) work (time) version of selection sort, often referred to as heapsort. The sort can be
implemented as:

301

302 CHAPTER 19. PRIORITY QUEUES

Algorithm 19.2 (Heapsort).

1 function sort(S) =
2 let
3 val pg = iter Q.insert Q.empty S

4 fun hsort(pg) =

5 let

6 case PQ.deleteMin pqg of

7 NONE = ()

8 | SOME(v,pg’) = cons(v, hsort(pg’))
9 in

10 hsort(pqg)

11 end

Priority queues also have applications elsewhere, including

e Huffman Codes
e Clustering algorithms
e Event simulation

e Kinetic algorithms

What are some possible implementations of a priority queue?

With sorted and unsorted linked lists (or arrays), one of deleteMin and insert is fast
and the other is slow. On the other hand balanced binary search trees (e.g., treaps) and binary
heaps implemented with (mutable) arrays have O(logn) span for both operations. But why
would you choose to use binary heaps over balanced binary search trees? For one, binary heaps
provide a £indMin operation that is O(1) whereas for BSTs it is O(log n). Let’s consider how
you would build a priority queue from a sequence.

But first, let’s review the heaps and search trees. A min-heap is a rooted tree such that the
key stored at every node is less or equal to the keys of all its descendants. Similarly a max-heap
is one in which the key at a node is greater or equal to all its descendants. A search-tree is a
rooted tree such that the key sorted at every node is greater than (or equal to) all the keys in its
left subtree and less than all the keys in its right subtree. Heaps maintain only a partial ordering,
whereas search trees maintain a total ordering.

A binary heap is a particular implementation that maintains two invariants:

e Shape property: A complete binary tree (all the levels of the tree are completely filled
except the bottom level, which is filled from the left).

e Heap property

December 3, 2014 (DRAFT, PPAP)

303

Because of the shape property, a binary heap can be maintained in an array, and the index of
the a parent or child node is a simple computation. Recall that operations on a binary heap first
restore the shape property, and then the heap property.

To build a priority queue, we can insert one element at a time into the priority queue as we
did in heap sort above. With both balanced binary search trees and binary heaps, the cost is
O(nlogn). Can we do better? For heaps, yes, build the heap recursively. If the left and right
children are already heaps, we can just “shift down” the element at the root:

1 function sequentialFromSegS =

2 let

3 function heapify(S,i) =

4 if (i >=|5|/2) then S

5 else

6 val §' = heapify(S, 2x*i+1)
7 val S = heapify(S', 2*i+2)
8 shiftDown(S", 1)

9 in heapify(S,0) end

With ST-sequences, shiftDown does O(logn) work on a subtree of size n. Therefore,
sequentialFromSeq has work

W(n) =2W(n/2) + O(logn) = O(n)

We can build a binary heap in parallel with ST-sequences. If you consider S as a complete
binary tree, the leaves are already heaps. The next level up of this tree, the roots of the subtrees
violate the heap property and need to be shifted down. Since the two children of each root are
heaps, the result of shift down is a heap. That is, on each level of the complete tree, fix the heaps
at that level by shifting down the elements at that level. The code below, for simplicity, assumes
|S| = 2% — 1 for some k:

if (d=0) then 5’
else heapify (S, d—1)
in heapify (5, logsn—1) end

1 function fromSeq S:’a seqg =

2 let

3 function heapify (5, d)=

4 let

5 val §' = shiftDown (S, (2¢—1,...,2¢71-2) d)
6 in

7

8

9

There is a subtly with this parallel shiftDown. It too needs to work one layer of the binary
tree at a time. That is, it takes a sequence of indices corresponding to elements at level d and

December 3, 2014 (DRAFT, PPAP)

304 CHAPTER 19. PRIORITY QUEUES

determines if the those elements need to swap with elements at level d + 1. It does the swaps
using in ject. Then it calls shiftDown recursively using the indices to where the elements
at d moved to in level d + 1, if indeed they moved down. When it reaches the leaves it returns
the updated ST-sequence.

This parallel version does the same work as the sequential version. But now span is O(logn)
at each of the O(logn) layers of the tree. More specifically, the span of the level d heapify
operation satisfies this recurrence:

S(d) =S(d—1)+ O((logn) — d)

Since d starts at log n, this sums to O(log® n).

In summary, the table below shows that a binary heap is an improvement over more general
purpose structures used for implementing priority queues. The shape property of a binary heap,

Implementation findMin deleteMin insert fromSeq
sorted linked list O(1) O(1) O(n) O(nlogn)
unsorted linked list O(n) O(n) O(1) O(n)
balanced search tree O(logn) O(logn) O(logn) O(nlogn)
binary heap O(1) O(logn) O(logn) O(n)

though, limits its ability to implement other useful priority queue operations efficiently. Next,
we will a more general priority queue, meldable ones.

19.1 Meldable Priority Queues

Recall that, much earlier in the course, we introduced a meldable priority queue as an example of
an abstract data type. It includes the me 1d operation, which is analogous to merge for binary
search trees; It takes two meldable priority queues and returns a meldable priority queue that
contains all the elements of the two input queues.

Today we will discuss one implementation of a meldable priority queue, which has the same
work and span costs as binary heaps, but also has an efficient operation me 1d. This operation
has work and span of O(log n + logm), where n and m are the sizes of the two priority queues
to be merged.

The structure we will consider is a ‘leftist heap, which is a binary tree that maintains the heap
property, but unlike binary heaps, it not does maintain the complete binary tree property. The
goal is to make the me 1d fast, and in particular run in O(log n) work. First, let’s consider how
we could use meld and what might be an implementation of me1d on a heap.

Consider the following a min-heap

December 3, 2014 (DRAFT, PPAP)

19.1. MELDABLE PRIORITY QUEUES 305

o 3
/\
7 o o 8
/\
11 o o 15
/\

22 0 o 16

There are two important properties of a min-heap:

1. The minimum is always at the root.

2. The heap only maintains a partial order on the keys (unlike a BST that maintains the keys
in a total order).

The first property allows us to access the minimum quickly, and it is the second that gives us
more flexibility than available in a BST.

Let’s consider how to implement the three operations deleteMin, insert,and fromSeq
on a heap. Like join for treaps, the meld operation, makes the other operations easy to
implement.

To implement de leteMin we can simply remove the root. This would leave:

7 o o 8

/\
11 o o 15

/N
22 o o 16

This is simply two heaps, which we can use me 1d to join.

To implement insert(Q,v), we can just create a singleton node with the value v and then
meld it with the heap for ().

With me1d, implementing fromSeq in parallel is easy using reduce:

(» Insert all keys into priority queue x)
val pg = Seqg.reduce Q.meld Q.empty (Seg.map Q.singleton S)

In this way, we can insert multiple keys into a heap in parallel: Simply build a heap as above
and then meld the two heaps. There is no real way, however, to remove keys in parallel unless
we use something more powerful than a heap.

The only operation we need to care about, therefore, is the me 1d operation. Let’s consider
the following two heaps

December 3, 2014 (DRAFT, PPAP)

306 CHAPTER 19. PRIORITY QUEUES

If we meld these two min-heaps, which value should be at the root? Well it has to be 3 since
it is the minimum value. So what we can do is select the tree with the smaller root and then
recursively meld the other tree with one of its children. In our case let’s meld with the right child.
So this would give us:

/\
8 o = meld (4 o o 5)
/ /N
14 o 11 o o 7

/ \
19 o o 23

If we apply this again we get

o 3
/\
8 o o 4
/ / N\
14 o 11 o = meld (o7 o 5)
/N

/ N\ \
19 0 0 23 = meld (o 7 empty)

Clearly if we are melding a heap A with an empty heap we can just use A. This algorithm leads
to the following code:

December 3, 2014 (DRAFT, PPAP)

19.2. LEFTIST HEAPS 307

—_—

datatype P(Q) = Leaf | Node of (key x PQ x PQ)

function meld(A, B) =
case (A, B) of
(_,Leaf)= A
| (Leaf,)= B
| (Node(kq, L., R.), Node(ky, Ly, Rp))=
case Key.compare (k,, k) of
LESS = Node(k,, L,, meld(R,, B))
| _ = Node(ky, Ly, meld(A, Ry))

O 0 N O Lt & W

This code traverses the right spine of each tree (recall that the right spine of a binary tree
is the path from the root to the rightmost node). The problem is that the tree could be very
imbalanced, and in general, we can not put any useful bound on the length of these spines—in
the worst case all nodes could be on the right spine. In this case the me 1d function could take
O(|A] + | B]) work.

19.2 Leftist Heaps

It turns out there is a relatively easy fix to this imbalance problem. The idea is to keep the trees
so that the trees are always deeper on the left than the right. In particular, we define the rank of a
node x as

rank(z) = # of nodes on the right spine of the subtree rooted at z,

and more formally:

rank(leaf) = 0
rank(node(_, _, R) = 1 + rank(R)

Now we require that all nodes of a leftist heap have the “leftist property”. That is, if L(z)
and R(z) are the left and child children of x, then we have:

Leftist Property: For all node z in a leftist heap, rank(L(x)) > rank(R(x))

This is why the tree is called leftist: for each node in the heap, the rank of the left child must
be at least the rank of the right child. Note that this definition allows the following unbalanced
tree.

December 3, 2014 (DRAFT, PPAP)

308 CHAPTER 19. PRIORITY QUEUES

on
This is OK since we only ever traverse the right spine of a tree, which in this case has length 1.

At an intuitive level, the leftist property implies that most of entries (mass) will pile up to
the left, making the right spine of such a heap relatively short. In this way, all update operations
we care about can be supported efficiently. We’ll make this idea precise in the following lemma
which will prove later; we’ll see how we can take advantage of this fact to support fast meld
operations.

Lemma 19.3. In a leftist heap with n entries, the rank of the root node is at most
logy(n + 1).

In words, this lemma says leftist heaps have a short right spine, about log n in length. To
get good efficiency, we should take advantage of it. Notice that unlike the binary search tree
property, the heap property gives us a lot of freedom in working with left and right child of a
node (in particular, they don’t need to be ordered in any specific way). Since the right spine is
short, our meld algorithm should, when possible, try to work down the right spine. With this
rough idea, if the number of steps required to meld is proportional to the length of the right spine,
we have an efficient algorithm that runs in about O(log n) work.

To make use of ranks we add a rank field to every node and make a small change to our code
to maintain the leftist property: the meld algorithm below effectively traverses the right spines
of the heaps A and B. (Note how the recursive call to me1d are only with either (R,, B) or
(A7 Rb))

December 3, 2014 (DRAFT, PPAP)

19.2. LEFTIST HEAPS 309

Data Structure 19.4 (Leftist Heap).

1 datatype PO =
2 Leaf
3 | Node of (int X key X PQ X PQ)

4 function rank Leaf = 0
| rank (Node(r,_,_,_)) =r

if (rank(L) < rank(R))
then Node(1 + rank(L), v, R, L)
else Node(1 + rank(R), v, L, R)

5
6 function makeLeftistNode(v,L,R) =
7
8

=]

10 function meld(A,B) =

11 case (A, B) of

12 (_, Leaf) = A

13 | (Leaf, _) = B

14 | (Node(_,ka, La, Ra), Node(_, ky, Ly, Rp)) =

15 if k£, <k, then

16 makeLeftistNode(kq, Ly, meld(R,, B))
17 else

18 makeLeftistNode(ky, Ly, meld(A,Ry))

Note that the only real difference is that we now use makeLeft i st Node to create a node
and ensure that the resulting heap satisfies the leftist property assuming the two input heaps L
and R did. It makes sure that the rank of the left child is at least as large as the rank of the right
child by switching the two children if necessary. It also maintains the rank value on each node.

Theorem 19.5. If A and B are leftists heaps then the me 1d(A, B) algorithm runs in O (log(| A|)+
log(| B|) work and returns a leftist heap containing the union of A and B.

Proof. The code for me1d only traverses the right spines of A and B, advancing by one node
in one of the heaps. Therefore, the process takes at most rank(A) + rank(B) steps, and each
step does constant work. Since both trees are leftist, by Lemma 19.3, the work is bounded by
O(log(|A]) + log(|B])). To prove that the result is leftist we note that the only way to create a
node in the code is with makeLeftistNode. This routine guarantees that the rank of the left
branch is at least as great as the rank of the right branch. [

Before proving Lemma 19.3 we will first prove a claim that relates the number of nodes in a
leftist heap to the rank of the heap.

Claim: If a heap has rank r, it contains at least 2" — 1 entries.

To prove this claim, let n(r) denote the number of nodes in the smallest leftist heap with rank
r. It is not hard to convince ourselves that n(r) is a monotone function; that is, if 7’ > r, then

December 3, 2014 (DRAFT, PPAP)

310 CHAPTER 19. PRIORITY QUEUES

n(r’) > n(r). With that, we’ll establish a recurrence for n(r). By definition, a rank-0 heap has 0
nodes. We can establish a recurrence for n(r) as follows: Consider the heap with root note x
that has rank r. It must be the case that the right child of x has rank » — 1, by the definition of
rank. Moreover, by the leftist property, the rank of the left child of x must be at least the rank of
the right child of x, which in turn means that rank(L(x)) > rank(R(x)) = r — 1. As the size of
the tree rooted x is 1 + |L(x)| + |R(z)|, the smallest size this tree can be is

n(r) = 1+ n(rank(L(z))) + n(rank(R(x)))
>14+n(r—1)4+n(r—1)=1+2-n(r—1).

Unfolding the recurrence, we get n(r) > 2" — 1, which proves the claim.

Proof of Lemma 19.3. To prove that the rank of the leftist heap with n nodes is at most log(n+1),
we simply apply the claim: Consider a leftist heap with n nodes and suppose it has rank r. By
the claim it must be the case that n > n(r), because n(r) is the fewest possible number of nodes
in a heap with rank r. But then, by the claim above, we know that n(r) > 2" — 1, so

n>n(r)>2"—1 = 2"<n+1 = r <logy(n+1).

This concludes the proof that the rank of a leftist heap is < log,(n + 1). O

19.3 Summary of Priority Queues

Already, we have seen a handful of data structures that can be used to implement a priority queue.
Let’s look at the performance guarantees they offer.

Implementation insert findMin deleteMin meld
(Unsorted) Sequence O(n) O(n) O(n) O(m +n)
Sorted Sequence O(n) O(1) O(n) O(m +n)
Balanced Trees (e.g. Treaps) O(logn) O(logn) O(logn) O(mlog(l+ =))
Leftist Heap O(logn) O(1) O(logn) O(logm + log n)

Indeed, a big win for leftist heap is in the super fast me 1 d operation—logarithmic as opposed
to roughly linear in other data structures.

December 3, 2014 (DRAFT, PPAP)

	Priority Queues
	Meldable Priority Queues
	Leftist Heaps
	Summary of Priority Queues

