15-210: Parallelism in the Real World

+ Types of paralellism

+ Parallel Thinking

* Nested Parallelism

+ Examples (Cilk, OpenMP, Java Fork/Join)
+ Concurrency

15-210 Pagel

Cray-1 (1976): the world's most
expensive love seat

15-210 2

Data Center: Hundred's of

thousands of computers

Since 2005: Multicore computers

AMD Opteron (sixteen-core) Model 6274
by AMD

Fotododeyt [+ (L customer review)

List Price: $693-00

price: $599.99 +Prime
You Save: $93.01 (13%)

Only 1 left in stock (more on the way).

Ships from and sold by Amazon.com. Gift-wrap available.

‘Want it delivered Monday, November 5? Order it in the next 14 hours and 37 minutes
Delivery may be impacted by Hurricane Sandy. Proceed to checkout to see estimated
43 new from $599.99

15-210

Xeon Phi: Knights Landing

72 Cores, x86, 500Gbytes of memory bandwidth
Summer 2015

New for Knights Landing

(Next Generation I Phi™ Products)

Platform Memory: DDR4 Bandwidth and

Compute: intel® Silvermont Arch. ntet* Atom™
Capacity Comparable to Intel® Xeon® Processors

= Low-Power Cores with HPC Enhancements?

= 3X Single Thread Performance* vs prior Gen.

y 4 = Intel Xeon Processor Binary Compatible®

v - 3 On-Package Memory: High Performance

A= et Silvermont Arch. '-/ * upto 16GB at launch = 1/3X the Spaces
= 5X Bandwidthvs DDR4” = 5X Power Efficiency®
Integrated Fabric . Jointly Developed with Micron Technology

Xeon Phi: Knights Landing

72 Cores, x86, 500Gbytes of memory bandwidth
Summer 2015

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

NI
suconcon,
2,600,000,000 sucomxaon 740, \ | g10.00n ssonaumax
1,000,000,000 s
g
wmmze /8620
100,000,000 P
/" torn ®aom
85w
€ 10,000,000 o g oy py o
Q o years
o
e
5 .
&)
2 1,000,000 s,
2
o
s
100,000
10,000
2,300

l T T T J
1971 1980 1990 2000 2011
15-210
Date of introduction

15-210 Page6
1
Moore's Law and Performance
/
Loooono Dual-Core Itanium 2 . /
Intel CPU
(sources: Intel, Wiki
10,000
|_336__g
o pd
% ..
! '.,: /. . Qﬂuk.swtd(MNx) [
cee :::;;:lk’aw
15-210 ° I T T 3

1970 1975 1980 1985 1990 1995 2000 2005 2010

Parallelismiis here.... And Growing!

Number of Cores;i_

| Core 2 Duo (2)

Future: 100+

Core2 Quad (4))

2006

2007 2008 2009 2010

64 core blade servers ($6K)
(shared memory)

AMD Opteron (sixteen-core) Model 6274
by AMD
Fdchet @ (Loustomer review)
List Price: $683-00
price: $599.99 brime
You Save: $93.01 (13%)

Only 1 left in stock (more on the way).
Ships from and sold by Amazon.com. Gift-wrap available.

x4-=

Want it delivered Monday, November 57 Order it in the next 14 hours and 37 minutes
Delivery may be impacted by Hurricane Sandy. Proceed to checkout to see estimated
43 new from $599.99

15-210 Andrew Chien, 2008
w n
1024 “cuda” cores
amazon.com Hello. Sign in to get personalized recommendations. New customer? Start here.
N~

rl”l'm L0 Electronics

All Electronics

Your Amazon.com | /i f Today's Deals | Gifts & Wish Lists | Gift Cards

Brands

Best Sellers Audio & Home Theater Camera & Photo CarE

15-210

EVGA GeForce GTX 590 Classified
3DVI/Mini-Display Port SLI Ready Li
03G-P3-1596-AR

by EVGA o

Setctcdcte @ (16 customer reviews) | C1bke] (29)

price: $924.56

In Stock.
Ships from and sold by J-Electronics.

Only 1 left in stock--order soon.

5 new from $749.99 2 used from $695.00

Samsung Galaxy S IV is now
Official: Octa-Core CPU, 5" Full HD
Display & 13MP Camera

Follow: Phones GT-19500 Samsung Display Samsung Exynos Samsung Galaxy S|V Samsung
Mobile Unpacked 2013

Samsung has just announced the Samsung Galaxy S4
r " at their Mobile Unpacked Event 2013 Episode 1 in

Life compini®™ New York, USA. The Galaxy S4 features a stunning 4.99”
Full HD (1920x1080) SuperAMOED display. With a 441 ppi
pixel density, your eyes won't be able to distinguish the
pixels, which ensures excellent visual comfort. Even though
the Galaxy S4 has a large display and a massive battery of
2,600 MAh, it's only 7.9mm thick. Samsung's latest
flagship device is PACKED with powerful components, consisting of Samsung's latest
Exynos 5 Octa-Core (5410) CPU based on ARM's biq.LITTLE technoloqy with Quad Cortex-

Intel Has a 48-Core Chip for Smartphones
and Tablets

By Wolfgang Gruener OCTOBER 31, 2012 9:20 AM - Source: Computerworld

Intel has developed a prototype of a 48-core processor for smartphones. Before
you ask: No, you can't buy a 48-core smartphone next year.

15-210 13

Parallel Hardware

Many forms of parallelism
- Supercomputers: large scale, shared memory

- Clusters and data centers: large-scale,
distributed memory

- Multicores: tightly coupled, smaller scale
- GPUs, on chip vector units
- Instruction-level parallelism

Parallelism is important in the real world.

15-210 14

Key Challenge: Software
(How to Write Parallel Code?)

At a high-level, it is a two step process:
- Design a work-efficient, low-span parallel
algorithm
- Implement it on the target hardware
In reality: each system required different code because
programming systems are immature
- Huge effort to generate efficient parallel code.
+ Example: Quicksort in MPI is 1700 lines of code,
and about the same in CUDA
- Implement one parallel algorithm: a whole thesis.
Take 15-418 (Parallel Computer Architecture and Prog.)

15-210 15

15-210 Approach

Enable parallel thinking by raising abstraction level

I. Parallel thinking: Applicable o many machine models and
programming languages

II. Reason about correctness and efficiency of algorithms
and data structures.

15-210 16

Parallel Thinking

Recognizing true dependences: unteach sequential
programming.

Parallel algorithm-design techniques
- Operations on aggregates: map/reduce/scan
- Divide & conquer, contraction

- Viewing computation as DAG (based on
dependences)

Cost model based on work and span

15-210 17

Quicksort from
Aho-Hopcroft-Ullman (1974)

procedure QUICKSORT(S):
if S contains at most one element then return S
else
begin
choose an element a randomly from S;
let S;, S, and S; be the sequences of
elements in S less than, equal to,
and greater than a, respectively;
return (QUICKSORT(S,) followed by S,
followed by QUICKSORT(S;))

end

15-210 Page 18

Quicksort from Sedgewick (2003)

public void quickSort(int[] a, int left, int right) {
int i = left-1; int j = right;
if (right <= left) return;
while (true) {
while (a[++i] < alright]);
while (a[right] < a[--j])
if (j==left) break;
if (i >= j) break;
swap(a,i,j); }
swap(a, i, right);
quickSort(a, left, i - 1);
quickSort(a, i+l, right); }

15-210

Algorithms

Styles of Parallel Programming

Data parallelism/Bulk Synchronous/SPMD
Nested parallelism : what we covered
Message passing

Futures (other pipelined parallelism)
General Concurrency

15-210 Page20

Nested Parallelism

Nested Parallelism =
arbitrary nesting of parallel loops + fork-join

- Assumes ho synchronization among parallel
tasks except at joint points.

- Deterministic if no race conditions

Advantages:
- Good schedulers are known
- Easy to understand, debug, and analyze costs
- Purely functional, or imperative...either works

15-210 Page21

Serial Parallel DAGs

Dependence graphs of nested parallel computations are
series parallel

Two tasks are parallel if not reachable from each other.

A data race occurs if two parallel tasks are involved in a
race if they access the same location and at least one
iS a write.

15-210 Page22

Nested Parallelism: parallel loops
cilk_for (i=0; i < n; i++) Cilk
B[i] = A[i]+1;

Microsoft TPL

Parallel.ForEach(A, x => x+1);

(C# F#)
B={x+1:x in A} Nesl, Parallel Haskell
#pragma omp for ()penAAP

for (i=0; i < n; i++)
B[i] = A[i] + 1;

15-210 Page23

Nested Parallelism: fork-join

cobegin { Dates back to the 60s. Used in
51; dialects of Algol, Pascal
S2;}

Java fork-join framework

coinvoke(£l,£2) Microsoft TPL (C# F#)
Parallel.invoke(f1l,£2)

#pragma omp sections
{ OpenMP (C++, C, Fortran, ...)
#pragma omp section
S1;
#pragma omp section
S2;

Bs-210 Page24

Nested Parallelism: fork-join

spawn S1;

52; cilk, cilk+
sync;

(expl || exp2) Various functional

languages
plet
x = expl Various dialects of
y = exp2 ML and Lisp
in
exp3
15210 Page25

Cilk vs. what we've covered

ML val (ab) = par(fn () => f(x), fn () => g(y))
Psuedocode: val (a,b) = (f(x) || g(y))
Cilk: ilk = £(x):
| E:E?s;wn @=ft Fork Join
cilk_sync;
ML: S=mapfA
Psuedocode: S =«f x:xin A> Map
Cilk: cilk_for (inti=0;i<n; i++)
15-210 S[i] = f(A[l]) Page26

Cilk vs. what we've covered

ML: S =tabulate f n
Psuedocode: S =<«fi:iin<0,.n-1> Tabulate
Cilk: cilk_for (inti=0;i<n; i++)
S[i1=f()
15-210 Page27

Example Cilk

int fib (int n) {

if (n<2) return (n);

else {
int x,y;
x = cilk spawn fib(n-1);
y = cilk spawn fib(n-2);
cilk sync;
return (x+y);

15-210 Page28

Example OpenMP:

Numerical Integration
Mathematically, we know that:

1
40 e f 4.0 B
x§¥) dx =TT
>‘ 0
\ We can approximate the
integral as a sum of
20 rectangles:

F(x) = 4.0/(1+x2)

N
E F(x;)Ax = TT
i=0

where each rectangle has
00 X 10 width Ax and height F(x;) at
R the middle of interval i. ”

The C code for Approximating PT

static long num_steps = 100000;
double step;

void main ()

{ inti; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
x = 0.5 * step;
for (i=0;i<= num_steps; i++){
x+=step;
sum += 4.0/(1.0+x*x);

}

pi = step * sum;

The C/openMP code for Approx. PT

static long num_steps = 100000; double step;

void main () Private clause
{ inti; double x, pi, sum = 0.0; creates data local to
step = 1.0/(double) num_steps; a thread

for (i=0;i<= num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

|#pragma omp parallel for private(i, x) reduction(+:sum) |

}

pi = step * sum;

‘ Reduction used to ‘
manage
‘ dependencies ‘

Example : Java Fork/Join

class Fib extends FJTask {
volatile int result; // serves as arg and result
int n;
Fib(int _n) { n = _n; }

public void run() {
if (n <= 1) result = n;
else if (n <= sequentialThreshold) number = seqgFib(n);
else {
Fib fl = new Fib(n - 1);
Fib f2 = new Fib(n - 2);
coInvoke(fl, £2);
result = fl.result + f2.result;

15-210 Page32

Cost Model (General)

Compositional:

Work : total number of operations
- costs are added across parallel calls

Span : depth/critical path of the computation
- Maximum span is taken across forked calls

Parallelism = Work/Span

- Approximately # of processors that can be
effectively used.

15-210 Page33

Combining costs (Nested Parallelism)

Combining for parallel for:
pfor (i=0; i<n; i++)
£(i);

n-1
W (pfor ..) = D W, ((0) work
i=0

D, (pfor ..) = max. De,(f@) span

15-210 34

Why Work and Span

Simple measures that give us a good sense of
efficiency (work) and scalability (span).

Can schedule in O(W/P + D) time on P processors.
This is within a constant factor of optimal.

Goals in designing an algorithm

1. Work should be about the same as the
sequential running time. When it matches
asymptotically we say it is work efficient.

2. Parallelism (W/D) should be polynomial.
0O(n'/?) is probably good enough

15-210 35

How do the problems do on
a modern multicore

u
28 T1/T32
Tseq/T32

36

Styles of Parallel Programming

Data parallelism/Bulk Synchronous/SPMD
Nested parallelism : what we covered
Message passing
Futures (other pipelined parallelism)

=) General Concurrency

15-210

Page37

Parallelism vs. Concurrency

Parallelism: using multiple processors/cores
running at the same time. Property of the machine
Concurrency: non-determinacy due fo interleaving
threads. Property of the application.

Concurrency
sequential concurrent
Traditional Traditional

serial programming | OS

Deterministic | General
parallelism parallelism

Parallelism
parallel

15-210 38

Concurrency : Stack Example 1

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
a->next = headPtr;
headPtr = a; }

link* pop() {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}

15-210

39

Concurrency : Stack Example 1

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
a->next = headPtr;
headPtr = a; }

link* pop() {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}

15-210 40

10

Concurrency : Stack Example 1

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
a->next = headPtr;
headPtr = a; }

link* pop() {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}

15-210 41

Concurrency : Stack Example 1

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {
a->next = headPtr;
headPtr = a; }

link* pop() {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}

15-210 42

CAS

bool CAS(ptr* addr, ptr a, ptr b) {
atomic {
if (*addr == a) {
*addr = b;
return 1;
} else
return 0;

A built in instruction on most processors:
CMPXCHG8B - 8 byte version for x86
CMPXCHG16B - 16 byte version

15-210 Page43

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) ({
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); }

link* pop() {

do {
link* h = headPtr;
if (h == NULL) return NULL;

link* nxt = h->next;
while (!'CAS(&headPtr, h, nxt))}
return h;}

15-210 44

11

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) {
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); }

link* pop() {
do {
link* h = headPtr;
if (h == NULL) return NULL;
link* nxt = h->next;
while ('CAS(&headPtr, h, nxt))}
return h;}

15-210 45

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) {
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); }

link* pop() {
do {
link* h = headPtr;
if (h == NULL) return NULL;
link* nxt = h->next;
while (!'CAS(&headPtr, h, nxt))}
return h;}

15-210

46

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) {
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); }

link* pop() {

do {
link* h = headPtr;
if (h == NULL) return NULL;

link* nxt = h->next;
while ('CAS(&headPtr, h, nxt))}
return h;}

15-210 47

Concurrency : Stack Example 2

struct stack {
link* headPtr;

void push(link* a) ({
do {
link* h = headPtr;
a->next = h;
while (!'CAS(&headPtr, h, a)); } X

link* pop() {

do {
link* h = headPtr;
if (h == NULL) return NULL;

link* nxt = h->next;
while (!'CAS(&headPtr, h, nxt))}
return h;}

15-210

48

12

Concurrency : Stack Example 2

Pl : x

P2 : z

s.pop();

Before:

After:

The ABA problem

s.pop(); y = s.pop();

P2:
P2:
Pl:
P2:

s.push (x) ;

h = headPtr;

nxt = h->next;
everything

CAS (&headPtr,h,nxt)

Can be fixed with counter and 2CAS, but-...

15-210

49

Concurrency : Stack Example 3

struct link {int v; link* next;}

struct stack {
link* headPtr;

void push(link* a) {

atomic {
a->next = headPtr;
headPtr = a; 1}

link* pop() {
atomic {
link* h = headPtr;
if (headPtr != NULL)
headPtr = headPtr->next;
return h;}}

15-210

50

Concurrency : Stack Example 3'

void swapTop (stack s) {

link* x = s.pop();
link* y = s.pop()
push (x) ;
push(y) ;

Queues are trickier than stacks.

15-210

51

Styles of Parallel Programming

Data parallelism/Bulk Synchronous/SPMD
Nested parallelism : what we covered
Message passing

=) Futures (other pipelined parallelism)
General Concurrency

15-210

Page52

13

Futures: Example

fun quickSort S = let
fun gs([], rest) = rest
| gs(h::T, rest) =

let
val L1 = filter (fn b => b < a) T
val L2 = filter (fn b => b >= a) T

in
gs(Ll, (a:: (gs (L2, rest)))
end

fun filter(£,[]) = []
| filter(f,h::T) =
if £(h) then(h::filter(£,T))
else filter(£,T)
in

as (s, [1)
gl-%&) Page53

Futures: Example

fun quickSort S = let
fun gs([], rest) = rest
| gs(h::T, rest) =

let
val L1 = filter (fn b => b < a) T
val L2 = filter (fn b => b >= a) T

in
gs (L1, future(a::(gs(L2, rest)))
end

fun filter(£,[]) = []
| filter(f,h::T) =
if f£(h) then future(h::filter(£f,T))
else filter(£,T)
in
as (s, [1)
éii.;&) Page54

Quicksort: Nested Parallel

Parallel Partition and Append

Work = O(n log n)

Span = O(lg? n)

15-210 55

Quicksort: Futures

Work = O(n log n)

Span = O(n)

15-210 56

14

Styles of Parallel Programming

Data parallelism/Bulk Synchronous/SPMD
* Nested parallelism : what we covered
Message passing
* Futures (other pipelined parallelism)
* General Concurrency

15-210 Page57

Xeon 7500

Memory: upto 1 TB

| h 4 of these g |
24 MB L3 24 MB

«—> «—
8 of these 8 of these

128 KB 128 KB | L2 | 128 KB 128 KB

o 5 . 50 G
® © ® ©

15-210 Page58

Question

How do we get nested parallel programs to work well
on a fixed set of processors? Programs say
nothing about processors.

Answer: good schedulers

15-210 Page59

Greedy Schedules

“Speedup versus Efficiency in Parallel Systems”,
Eager, Zahorjan and Lazowska, 1989

For any greedy schedule:

. w PW
Efficiency= —=2———
T, W+D(P-1)

Parallel Time= 7, < % +D

15-210 60

15

Types of Schedulers

Bread-First Schedulers
Work-stealing Schedulers
Depth-first Schedulers

15-210 Page61

Breadth First Schedules

Most ndive schedule. Used by most implementations
of P-threads.

e —

[4866 % \
[A R \
[29 Q9 | O(n3) tasks

Bad space usage, bad locality
15-210 62

Work Stealing

P, P, Ps Py
old
Local D []
work queues new

push new jobs on “new” end

pop jobs from “new” end

If processor runs out of work, then “steal” from
another “old” end

Each processor tends to execute a sequential part of
the computation.

15-210 63

Work Stealing

Tends to schedule “sequential blocks” of tasks

— = steal

15-210 64

16

Work Stealing Theory Work Stealing Practice

For strict computations Used in Cilk Scheduler

Blumofe and Leiserson, 1999 - Small overheads because common case of

of steals = O(PD) pushing/popping from local queue can be made
Space = O(PS,) S, is the sequential space I\(;T;’)(Wlﬂ‘l good data structures and compiler

Acar, Blelloch and Blumofe, 2003

- tenti lobal
of cache misses on distributed caches No conten .lon 9n d global queue)
M+ O(CPD) - Has good distributed cache behavior
M, = sequential misses, C = cache size - Can indeed require O(S,P) memory

Used in X10 scheduler, and others

15-210 65 15-210 66

Parallel Depth First Schedules (P- “ —_—
DFS Premature task” in P-DFS

List scheduling based on Depth-First ordering A running task is premature if there is an earlier
sequential task that is not complete
2 processor 2 processor
schedule schedule

@)
¥
)
@)
()
>
)
@

N bh~ o

=0 O WwN -
SV W]
— w N =
S50 00w

For strict computations a shared stack o -
implements a P-DFS = premature

15-210 67 15-210 68

P-DFS Theory

Blelloch, Gibbons, Matias, 1999

For any computation:

Premature nodes at any time = O(PD)
Space = S; + O(PD)

Blelloch and Gibbons, 2004

With a shared cache of size C; + O(PD) we have M, =
M,

15-210 69

P-DFS Practice

Experimentally uses less memory than work stealing
and performs better on a shared cache.

Requires some “coarsening” to reduce overheads

15-210

70

Conclusions

lots of parallel languages
lots of parallel programming styles

high-level ideas cross between languages and
styles

- scheduling is important

15-210 Page71

18

