
Chapter 14

Minimum Spanning Tree

In this chapter we will cover another important graph problem, Minimum Spanning Trees (MST).
The MST of an undirected weighted graph is a tree that spans the graph and for which the sum
of the edge weights is no more than any other such tree. We will first cover what it means to be a
spanning tree, and an important cut property on graphs. We then cover three different algorithms
for the problem: Kruskal’s, Prim’s, and Borůvka’s. All of them make use of the cut property.
The first two are sequential, and the third is parallel.

14.1 Spanning Trees

Recall that we say that an undirected graph is a forest if it has no cycles and a tree if it is also
connected. Often in a general connected undirected graph we want to identify a subset of the
edge that form a tree.

Definition 14.1. For a connected undirected graph G = (V,E), a spanning tree is a tree
T = (V,E ′) with E ′ ⊆ E.

Note that a spanning tree of a graph G is a subgraph of G that spans the graph (includes all its
vertices). A graph can have many spanning trees, but all have |V | vertices and |V | − 1 edges.

Example 14.2. A graph on the left, and two possible spanning trees.

a

b

c
d

e

f a

b

c
d

e

f a

b

c
d

e

f

229

230 CHAPTER 14. MINIMUM SPANNING TREE

Exercise 14.3. Prove that any tree with n vertices has n− 1 edges.

One way to generate a spanning tree is simply to do a graph search, such as DFS or BFS.
Whenever we visit a new vertex we add a new edge to it, as in DFS and BFS trees. DFS and
BFS are work-efficient algorithms for computing spanning trees but they are not good parallel
algorithms. Another way to generate a spanning tree is to use graph contraction, which as we
have seen can be done in parallel. The idea is to use star contraction and add all the edges that
are picked to define the stars throughout the algorithm to the spanning tree.

Exercise 14.4. Work out the details of the algorithm for spanning trees using graph
contraction and prove that it produces a spanning tree.

14.2 Minimum Spanning Trees

Recall that a graph has many spanning trees. When the graphs are weighted, we are usually
interested in finding the spanning tree with the smallest total weight (i.e. sum of the weights of
its edges).

Definition 14.5. The minimum (weight) spanning tree (MST) problem is given an con-
nected undirected weighted graph G = (V,E,w), find a spanning tree of minimum
weight, where the weight of a tree T is defined as:

w(T) =
∑

e∈E(T)

w(e) .

Minimum spanning trees have many interesting applications.

Example 14.6. Suppose that you are wiring a building so that all the rooms are connected.
You can connect any two rooms at the cost of the wire connecting them. To minimize the
cost of the wiring, you would find a minimum spanning tree of the graph representing the
building.

Bounding TSP with MST. There is an interesting connection between minimum spanning
trees and the symmetric Traveling Salesperson Problem (TSP), an NP-hard problem. Recall that
in TSP problem, we are given a set of n cities (vertices) and are interested in finding a tour that
visits all the vertices exactly once and returns to the origin. For the symmetric case the edges are
undirected (or equivalently the distance is the same in each direction). For the TSP problem, we

14.2. MINIMUM SPANNING TREES 231

usually consider complete graphs, where there is an edge between any two vertices. Even if a
graph is not complete, we can typically complete it by inserting edges with large weights that
make sure that the edge never appears in a solution. Here we also assume the edge weights are
non-negative.

Since the solution to the TSP problem visits every vertex once (returning to the origin), it
spans the graph. It is however not a tree but a cycle. Since each vertex is visited once, however,
dropping any edge would yield a spanning tree. Thus a solution to the TSP problem cannot have
less total weight than that of a minimum spanning tree. In other words, the weight of a MST
yields a lower bound on the solution to the symmetric TSP problem for graphs with non-negative
edge weights.

Approximating TSP with MST. It turns out that minimum spanning trees can also be used
to find an approximate solutions to the TSP problem, effectively finding an upper bound. This,
however, requires one more condition on the MST problem. In particular in addition to requiring
that weights are non-negative we require that all distances satisfy the triangle inequality—i.e.,
for any three vertices a, b, and c, w(a, c) ≤ w(a, b) + w(b, c). This restriction holds for most
applications of the TSP problem and is referred to as the metric TSP problem. It also implies
that edge weights are non-negative. We would now like a way to use the MST to generate a path
to take as an approximate solution to the TSP problem. To do this we first consider a path based
on the MST that can visit a vertex multiple times, and then take shortcuts to ensure we only visit
each vertex once.

Given a minimum spanning tree T we can start at any vertex s and take a path based on the
depth-first search on the tree from s. In particular whenever we visit a new vertex v from vertex
u we traverse the edge from u to v and when we are done visiting everything reachable from v
we then back up on this same edge, traversing it from v to u. This way every edge in our path is
traversed exactly twice, and we end the path at our initial vertex. If we view each undirected
edge as two directed edges, then this path is a so-called Euler tour of the tree—i.e. a cycle in a
graph that visits every edge exactly once. Since T spans the graph, the Euler tour will visit every
vertex at least once, but possibly multiple times.

Example 14.7. The figure on the right shows an Euler tour of the tree on the left. Starting
at a, the tour visits a,b,e,f,e,b,a,c,d,c,a.

a

b

c
d

e

f a

b

c
d

e

f

232 CHAPTER 14. MINIMUM SPANNING TREE

Now, recall that in the TSP problem it is assumed that there is an edge between every pair of
vertices. Since it is possible to take an edge from any vertex to any other, we can take shortcuts
to avoid visiting vertices multiple times. More precisely what we can do is when about to go
back to a vertex that the tour has already visited, instead find the next vertex in the tour that has
not been visited and go directly to it. We call this a shortcut edge.

Example 14.8. The figure on the right shows a solution to TSP with shortcuts, drawn in
red. Starting at a, we can visit a,b,e,f,c,d,a.

a

b

c
d

e

f
a

b

c
d

e

f

By the triangle inequality the shortcut edges are no longer than the paths that they replace.
Thus by taking shortcuts, the total distance is not increased. Since the Euler tour traverses each
edge in the minimum spanning tree twice (once in each direction), the total weight of the path is
exactly twice the weight of the TSP. With shortcuts, we obtain a solution to the TSP problem that
is at most the weight of the Euler tour, and hence at most twice the weight of the MST. Since
the weight of the MST is also a lower bound on the TSP, the solution we have found is within
a factor of 2 of optimal. This means our approach is an approximation algorithm for TSP that
approximates the solution within a factor of 2. This can be summarized as:

W (MST(G)) ≤ W (TSP(G)) ≤ 2W (MST(G)) .

Remark 14.9. It is possible to reduce the approximation factor to 1.5 using a well known
algorithm developed by Nicos Christofides at CMU in 1976. The algorithm is also based
on the MST problem, but is followed by finding a vertex matching on the vertices in the
MST with odd-degree, adding these to the tree, finding an Euler tour of the combined
graph, and again shortcutting. Christofides algorithm was one of the first approximation
algorithms and it took over 40 years to improve on the result, and only very slightly.

14.3 Algorithms for Minimum Spanning Trees

There are several algorithms for computing minimum spanning trees. They all, however, are
based on the same underlying property about cuts in a graph, which we will refer to as the

14.3. ALGORITHMS FOR MINIMUM SPANNING TREES 233

light-edge property. Roughly, the light-edge property states that if you partition the graph into
two, the minimum edge between the two parts has to be in the MST. A more formal definition
is given below. The light-edge property gives a way to identify edges of the MST, which can
then be repeatedly added to form the tree. In our discussion we will assume without any loss of
generality that all edges have distinct weights. It is without loss-of-generality since we are free to
break ties in a consistent way (e.g. if two edges have the same weight, order them by where they
appear in the input). Given distinct weights, the minimum spanning tree of any graph is unique.

Exercise 14.10. Prove that a graph with distinct edge weights has a unique minimum
spanning tree.

Definition 14.11. For a graph G = (V,E), a cut is defined in terms of a non-empty
proper subset U (V . This set U partitions the graph into (U, V \U), and we refer to the
edges between the two parts as the cut edges E(U,U), where as is typical in literature,
we write U = V \ U .

The subset U used in the definition of a cut might include a single vertex v, in which case the
cut edges would be all edges incident on v. But the subset U must be a proper subset of V (i.e.,
U 6= ∅ and U 6= V). We sometimes say that a cut edge crosses the cut.

Example 14.12. Two example cuts. For each cut, we can find the lightest edge that
crosses that cut, which in this case is 2 for both cuts shown.

a

b

c
d

e

f

1

2
4

3
67

5

a

b

c
d

e

f

1

2
4

3
67

5

We are now ready for a formal statement and proof of the light-edge property, which is
given in Lemma 14.13. As indicated in the implication, all three algorithms we consider take
advantage of the light-edge property. Kruskal’s and Prim’s algorithms are based on selecting
a single lightest weight edge on each step and are hence sequential, while Borůvka’s selects
multiple edges and hence can be parallelized. We briefly review Kruskal’s and Prim’s algorithm
and will spend most of our time on a parallel variant of Borůvka’s algorithm.

234 CHAPTER 14. MINIMUM SPANNING TREE

Lemma 14.13 (Light-Edge Property). Let G = (V,E,w) be a connected undirected
weighted graph with distinct edge weights. For any cut of G, the minimum weight edge
that crosses the cut is in the minimum spanning tree MST(G) of G.

u
vU V\U

e’

e

Proof. The proof is by contradiction. Assume the minimum-weighted edge e = (u, v)
is not in the MST. Since the MST spans the graph, there must be some simple path P
connecting u and v in the MST (i.e., consisting of just edges in the MST). The path must
cross the cut between U and V \ U at least once since u and v are on opposite sides. Let
e′ be an edge in P that crosses the cut. By assumption the weight of e′ is larger than
that of e. Now, insert e into the graph—this gives us a cycle that includes both e and
e′—and remove e′ from the graph to break the only cycle and obtain a spanning tree
again. Now, since the weight of e is less than that of e′, the resulting spanning tree has a
smaller weight. This is a contradiction and thus e must have been in the tree.

Implication: Any edge that is a minimum weight edge crossing a cut can be immediately
added to the MST. For example the overall minimum edge (Kruskal’s algorithm), the
minimum edge incident on each vertex (Borůvka’s algorithm), or when doing a graph
search, the minimum edge between the visited set and the frontier (Prim’s algorithm).

Remark 14.14. Even though Borůvka’s algorithm is the only parallel algorithm, it was
the earliest, invented in 1926, as a method for constructing an efficient electricity network
in Moravia in the Czech Republic. It was re-invented many times over.

Kruskal’s Algorithm

As described in Kruskal’s original paper, the algorithm is:

“Perform the following step as many times as possible: Among the edges of G not
yet chosen, choose the shortest edge which does not form any loops with those edges
already chosen” [Kruskal, 1956]

In more modern terminology we would replace “shortest” with “lightest” and “loops” with
“cycles”.

14.3. ALGORITHMS FOR MINIMUM SPANNING TREES 235

Kruskal’s algorithm is correct since it maintains the invariant on each step that the edges
chosen so far are in the MST of G. This is true at the start. Now on each step, any edge that
forms a cycle with the already chosen edges cannot be in the MST. This is because adding it
would would violate the tree property of an MST and we know, by the invariant, that all the
other edges on the cycle are in the MST. Now considering the edges that do not form a cycle, the
minimum weight edge must be a “light edge” since it is the least weight edge that connects the
connected subgraph at either endpoint to the rest of the graph. Finally we have to argue that all
the MST edges have been added. Well we considered all edges, and only tossed the ones that we
could prove were not in the MST (i.e. formed cycles with MST edges).

We could finish our discussion of Kruskal’s algorithm here, but a few words on how to
implement the idea efficiently are warranted. In particular checking if an edge forms a cycle
might be expensive if we are not careful. Indeed it was not until many years after Kruskal’s
original paper that an efficient approach to the algorithm was developed. Note that to check if
an edge (u, v) forms a cycle, all one needs to do is test if u and v are in the same connected
component as defined by the edges already chosen. One way to do this is by contracting an
edge (u, v) whenever it is added—i.e., collapse the edge and the vertices u and v into a single
supervertex. However, if we implement this as described in the last chapter we would need to
update all the other edges incident on u and v. This can be expensive since an edge might need
to be updated many times.

To get around these problem it is possible to update the edges lazily. What we mean by lazily
is that edges incident on a contracted vertex are not updated immediately, but rather later when
the edge is processed. At that point the edge needs to determine what supervertices (components)
its endpoints are in. This idea can be implemented with a so-called union-find data type. The
ADT supports the following operations on a union-find type U : insert(U, v) inserts the vertex
v, union(U, (u, v)) joins the two elements u and v into a single supervertex, find(U, v) returns
the supervertex in which v belongs, possibly itself, and equals(u, v) returns true if u and v are
the same supervertex. Now we can simply process the edges in increasing order. This idea gives
Algorithm 14.15.

To analyze the work and span of the algorithm we first note that there is no parallelism, so
the span equals the work. To analyze the work we can partition it into the work required for
sorting the edges and then the work required to iterate over the edges using union and find. The
sort requires O(m log n) work. The union and find operations can be implemented in O(log n)
work each requiring another O(m log n) work since they are called O(m) times. The overall
work is therefore O(m log n). It turns out that the union and find operations can actually be
implemented with less than O(log n) amortized work, but this does not reduce the overall work
since we still have to sort.

Prim’s Algorithm

Prim’s algorithm performs a priority-first search to construct the minimum spanning tree. The
idea is that if we have already visited a set X , then by the light-edge property the minimum

236 CHAPTER 14. MINIMUM SPANNING TREE

Algorithm 14.15 (Union-Find Kruskal).

1 function kruskal(G = (V,E,w)) =
2 let
3 val U = iter UF.insert UF.∅ V % insert vertices into union find structure
4 val E′ = sort(E,w) % sort the edges
5 function addEdge((U, T), e = (u, v)) =
6 let
7 val u′ = UF.find(U, u)
8 val v′ = UF.find(U, v)
9 in

10 if (u′ = v′) then (U, T) % if u and v are already connected then skip
11 else (UF.union(U, u′, v′), T ∪ e) % contract edge e in U and add e to T
12 end
13 in
14 iter addEdge (U, ∅) E′

15 end

weight edge with one of its endpoint in X and the other in V \X must be in the MST (it is a
minimum cross edge from X to V \X). We can therefore add it to the MST and include the
other endpoint in X . This leads to the following definition of Prim’s algorithm:

Algorithm 14.16 (Prim’s Algorithm). For a weighted undirected graph G = (V,E,w)
and a source s, Prim’s algorithm is priority-first search on G starting at an arbitrary
s ∈ V with T = ∅, using priority p(v) = min

x∈X
w(x, v) (to be minimized), and setting

T = T ∪ {(u, v)} when visiting v where w(u, v) = p(v).

When the algorithm terminates, T is the set of edges in the MST.

Example 14.17. A step of Prim’s algorithm. Since the edge (c,f) has minimum weight
across the cut (X, Y), the algorithm will “visit” f adding (c,f) to T and f to X .

s

c

b e

a 3

5

6

X

f

1

Y= V \ X

d

14.4. PARALLEL MINIMUM SPANNING TREE 237

Remark 14.18. This algorithm was invented in 1930 by Czech mathematician Vojtech
Jarnik and later independently in 1957 by computer scientist Robert Prim. Edsger
Dijkstra’s rediscovered it in 1959 in the same paper he described his famous shortest
path algorithm.

Exercise 14.19. Carefully prove the correctness of Prim’s algorithm by induction.

Interestingly this algorithm is quite similar to Dijkstra’s algorithm for shortest paths. The
only differences are (1) we start at an arbitrary vertex instead of at a source, (2) that p(v) =
minx∈X(x, v) instead of minx∈X(d(x) + w(x, v)), and (3) we maintain a tree T instead of a
table of distances d(v). Because of the similarity we can basically use the same priority-queue
implementation as in Dijkstra’s algorithm and it runs with the same O(m log n) work bounds.

Exercise 14.20. Write out the pseudocode for a Priority Queue based implementation of
Prim’s algorithm that runs in O(m log n) work.

14.4 Parallel Minimum Spanning Tree

As we discussed, Kruskal and Prim’s algorithm are sequential algorithms. We now focus on
developing an MST algorithm that runs efficiently in parallel using graph contraction.

We will be considering at a parallel algorithm based on an approach by Borůvka, which we
may even be able to invent on the fly. The two algorithms so far picked light edges belonging to
the MST carefully one by one. It is in fact possible to select many light edges at the same time.
Recall than all light edges that cross a cut must be in the MST. The most trivial cut is simply to
consider a vertex v and the rest of the vertices in the graph. The edges that cross the cut are the
edges incident on v. Therefore, by the light edge rule, for each vertex, the minimum weight edge
between it and its neighbors is in the MST. We will refer to these edges as the minimum-weight
edges of the graph.

Example 14.21. The minimum-weight edges of the graph are highlighted. The vertices
a and b both pick edge {a,b}, c picks {c,d}, d and f pick {d,f}, and e picks {e,b}.

a

b

c
d

e

f

1

2
4

3
67

5

238 CHAPTER 14. MINIMUM SPANNING TREE

This gives us a way to identify many MST edges, and since each edge can probably find its
own minimum edge, it is likely this can be done in parallel. Sometimes just one round of picking
minimum-weight edges will select all the MST edges and thus would complete the algorithm.
However, in most cases, the minimum-weight edges on their own do not form a spanning tree.
Indeed, in our example, we are missing the edge (e,f) since neither e nor f pick it. Note that
we no longer have to consider edges that are within a component since adding any such edge
would create a cycle with edges that we know are in the MST, and therefore cannot be in the
MST. Therefore if we can contract the graph along the edges that we selected, we can proceed to
consider the cuts that have not been covered.

Borůvka’s Algorithm

The idea of Borůvka’s algorithm is to use graph contraction to collapse each component that
is connected by a set of minimum-weight edges into a single vertex. Recall that in graph
contraction, all we need is a partition of the graph into disjoint connected subgraphs. Given such
a partition, we then replace each subgraph (partition) with a supervertex and relabel the edges.
This is repeated until no edges remain.

Example 14.22. Contraction along the minimum edges. Note that there are redundant
edges between the two partitions.

a

b

c
d

e

f

1

2
4

3
67

5
abe

cdf
?

One property of graph contraction is that it can create redundant edges. When discussing graph
contraction in the last chapter the graphs were unweighted so we could just keep one of the
redundant edges, and it did not matter which one. When the edges have weights, however, we
have to decide what the “combined” weight will be. How the edges are combined will depend on
the application, but in the application to MST in Borůvka’s algorithm we note that any future cut
will always cut all the edges or none of them. Since we are always interested in finding minimum
weight edges across a cut, we only need to keep the minimum of the redundant edges. In the
example above we would keep the edge with weight 4.

What we just covered is exactly Borůvka’s idea. He did not discuss implementing the
contraction in parallel. At the time, there were not any computers let alone parallel ones. We are
glad that he has left us something to do. In summary, Borůvka’s algorithm can be described as
follows.

14.4. PARALLEL MINIMUM SPANNING TREE 239

Algorithm 14.23 (Borůvka). While there are edges remaining: (1) select the minimum
weight edge out of each vertex and contract each connected component defined by these
edges into a vertex; (2) remove self edges, and when there are redundant edges keep the
minimum weight edge; and (3) add all selected edges to the MST.

We now consider the efficiency of this algorithm. We first focus on the number of rounds of
contraction and then consider how to implement the contraction. We note that since contracting
an edge removes exactly one vertex, if k edges are selected then k vertices are removed. We
might now be tempted to say that every vertex will be removed since every vertex selects an edge.
This is not the case since two vertices can select the same edge. Therefore there can be half as
many edges as vertices, but there must be at least half as many. We therefore remove half the
vertices on each round. This implies that Borůvka’s algorithm will take at most log2 n rounds.

We now consider how to contract the graph on each round. This requires first identifying
the minimum-weight edges. How this is done depends on the graph representation, so we will
defer this for the moment, and look at the contraction itself once the minimum-weight edges
have been identified. In general the components identified by selecting minimum-weight edges
are neither single edges nor single stars.

Example 14.24. An example where minimum-weight edges give a non-star tree. Note
that we have in fact picked a minimum spanning tree by just selecting the minimum-weight
edges.

a

b

c
d

e

f

1

2
3

4
67

5

In general, the minimum-weight edges will form a forest (a set of trees).

Exercise 14.25. Prove that the minimum-weight edges will indeed form a forest. Recall
that we are assuming that no two edge weights are equal.

Therefore what we want to contract are trees. A tree can be contracted by repeatedly
contracting disjoint stars within the tree. Indeed this can be done with contractGraph using
star contraction from the last chapter. Furthermore since when doing a star contraction on a
forest, it remains a forest on each step, the number of edges goes down with the number of
vertices. Therefore the total work to contract all the stars will be bounded by O(n) if using array
sequences. The span remains O(log2 n).

240 CHAPTER 14. MINIMUM SPANNING TREE

After contracting each tree, we have to update the edges. As discussed earlier for redundant
edges we want to keep the minimum weight such edge. There are various ways to do this,
including keeping the redundant edges. Keeping the edges turns out to be an effective solution,
and allows the updating the edges to be done in O(m) work. Assuming redundant edges, the
minimum into each component can still be done with O(m) work, as described below. Since
there are at most log n rounds, Borůvka’s algorithm will run in O(m log n) work and O(log3 n)
span.

Borůvka’s algorithm, improved with star contraction. We will now improve the span of
Borůvka by a logarithmic factor by interleaving steps of star contraction with steps of finding the
minimum-weight edges, instead of fully contracting the trees defined by the minimum-weight
edges. The idea is to apply randomized star contraction on the minimum-weight edges, and then
select a new set of minimum-weight edges. We repeat this simpler contraction step until there
are no edges. As we will show, at each step, we will still be able to reduce the number of vertices
by a constant factor (in expectation), leading to logarithmic number of rounds. The advantage of
this second approach is that we will reduce the overall span for finding the MST from O(log3 n)
to O(log2 n) while maintaining the same work.

Example 14.26. An example of Borůvka with star contraction.

a

b

c
d

e

f

1

2
3

4
67

5
H

H

T

T

H

H

a

b

c
d

e

f

1

2
3

4
67

5
H

H

T

T

H

H

More precisely, for a set of minimum-weight edges minE , let H = (V,minE) be a subgraph
of G. We will apply one step of the star contraction algorithm on H . To do this we modify our
starContract routine so that after flipping coins, the tails only hook across their minimum-
weight edge. The modified algorithm for star contraction is as follows. In the code w stands for
the weight of the edge (u, v).

14.4. PARALLEL MINIMUM SPANNING TREE 241

Pseudo Code 14.27 (Star Contraction along Minimum-Weight Edges).
1 function minStarContract(G = (V,E), i) =
2 let
3 val minE = minEdges(G)
4 val P = {u 7→ (v, w) ∈ minE | ¬heads(u, i) ∧ heads(v, i)}
5 val V ′ = V \ domain(P)

6 in (V ′, P) end
where minEdges(G) finds the minimum edge out of each vertex v.

Before we go into details about how we might keep track of the MST and other information,
let us try to understand what effects this change has on the number of vertices contracted away.
If we have n non-isolated vertices, the following lemma shows that the algorithm still removes
n/4 vertices in expectation on each step:

Lemma 14.28. For a graph G with n non-isolated vertices, let Xn be the random
variable indicating the number of vertices removed by minStarContract(G, r).
Then, E [Xn] ≥ n/4.

Proof. The proof is pretty much identical to our proof for starContract except here we’re
not working with the whole edge set, only a restricted one minE. Let v ∈ V (G) be a non-isolated
vertex. Like before, let Hv be the event that v comes up heads, Tv that it comes up tails, and Rv

that v ∈ domain(P) (i.e, it is removed). Since v is a non-isolated vertex, v has neighbors—and
one of them has the minimum weight, so there exists a vertex u such that (v, u) ∈ minE. Then,
we have that Tv ∧Hu implies Rv since if v is a tail and u is a head, then v must join u. Therefore,
Pr [Rv] ≥ Pr [Tv]Pr [Hu] = 1/4. By the linearity of expectation, we have that the number of
removed vertices is

E

[∑
v:v non-isolated

I {Rv}

]
=

∑
v:v non-isolated

E [I {Rv}] ≥ n/4

since we have n vertices that are non-isolated.

This means that this MST algorithm will take only O(log n) rounds, just like our other graph
contraction algorithms.

Final Things. There is a little bit of trickiness since, as the graph contracts, the endpoints of
each edge changes. Therefore, if we want to return the edges of the minimum spanning tree, they
might not correspond to the original endpoints. To deal with this, we associate a unique label
with every edge and return the tree as a set of labels (i.e. the labels of the edges in the spanning
tree). We also associate the weight directly with the edge. The type of each edge is therefore
(vertex × vertex × weight× label), where the two vertex endpoints can change as the

242 CHAPTER 14. MINIMUM SPANNING TREE

Algorithm 14.29 (Borůvka’s based on Star Contraction).

1 function minEdges (E) =
2 let
3 val ET = {(u, v, w, l) 7→ {u 7→ (v, w, l)} : (u, v, w, l) ∈ E}
4 function joinEdges((v1, w1, l1), (v2, w2, l2)) =
5 if (w1 ≤ w2) then (v1, w1, l1) else (v2, w2, l2)
6 in
7 reduce (merge joinEdges) {} ET
8 end

9 function minStarContract(G = (V,E), i)
10 let
11 val minE = minEdges(G)
12 val P = {(u 7→ (v, w, `)) ∈ minE | ¬heads(u, i) ∧ heads(v, i)}
13 val V ′ = V \ domain(P)
14 in (V ′, P) end

15 function MST((V,E), T, i) =
16 if (|E| = 0) then T
17 else let
18 val (V ′, PT) = minStarContract((V,E), i)
19 val P = {u 7→ v : u 7→ (v, w, `) ∈ PT} ∪ {v 7→ v : v ∈ V ′}
20 val T ′ = {` : u 7→ (v, w, `) ∈ PT}
21 val E′ = {(P [u], P [v], w, l) : (u, v, w, l) ∈ E | P [u] 6= P [v]}
22 in
23 MST((V ′, E′), T ∪ T ′, i+ 1)
24 end

graph contracts but the weight and label stays fixed. This leads to the slightly-updated version of
minStarContract that appears in Algorithm 14.29.

The function minEdges(G) in Line 11 finds the minimum edge out of each vertex v and
maps v to the pair consisting of the neighbor along the edge and the edge label. By Theorem 14.13,
since all these edges are minimum out of the vertex, they are safe to add to the MST. Line 12
then picks from these edges the edges that go from a tail to a head, and therefore generates a
mapping from tails to heads along minimum edges, creating stars. Finally, Line 13 removes all
vertices that are in this mapping to star centers.

This is ready to be used in the MST code, similar to the graphContract code studied last
time, except we return the set of labels for the MST edges instead of the remaining vertices. The
code is given in Algorithm 14.29 The MST algorithm is called by running MST(G, ∅, r). As an
aside, we know that T is a spanning forest on the contracted nodes.

Finally we describe how to implement minEdges(G), which returns for each vertex the

14.4. PARALLEL MINIMUM SPANNING TREE 243

minimum edge incident on that vertex. There are various ways to do this. One way is to make
a singleton table for each edge and then merge all the tables with an appropriate function to
resolve collisions. Algorithm 14.29 gives code that merges edges by taking the one with lighter
edge weight.

If using sequences for the edges and vertices an even simpler way is to presort the edges
by decreasing weight and then use inject. Recall that when there are collisions at the same
location inject will always take the last value, which will be the one with minimum weight.

244 CHAPTER 14. MINIMUM SPANNING TREE

.

	Minimum Spanning Tree
	Spanning Trees
	Minimum Spanning Trees
	Algorithms for Minimum Spanning Trees
	Parallel Minimum Spanning Tree

