Chapter 18

Hashing

hash: transitive verb!

1. (a) to chop (as meat and potatoes) into small pieces

(b) confuse, muddle

This is the definition of hash from which the computer term was derived. The idea of hashing
as originally conceived was to take values and to chop and mix them to the point that the original
values are muddled. The term as used in computer science dates back to the early 1950’s.

More formally the idea of hashing is to approximate a random function i : &« — 3 from a
source (or universe) set U of type « to a destination set of type 3. Most often the source set is
significantly larger than the destination set, so the function not only chops and mixes but also
reduces. In fact the source set might have infinite size, such as all character strings, while the
destination set always has finite size. Also the source set might consist of complicated elements,
such as the set of all directed graphs, while the destination are typically the integers in some
fixed range. Hash functions are therefore many to one functions.

Using an actual randomly selected function from the set of all functions from « to 5 is
typically not practical due to the number of such functions and hence the size (number of bits)
needed to represent such a function. Therefore in practice one uses some pseudorandom function.

"Merriam Websters

287

288 CHAPTER 18. HASHING

Why is it useful to have random or pseudo random functions that map from some large set to
a smaller set? Generally such functions might be used to hide data, to reorder data in a random
order, or to spread data smoothly over a range. Here we consider some applications of each.

1. We saw how hashing can be used in treaps. In particular we suggested using a hash
function to hash the keys to generate the “random” priorities. Here what was important
is that the ordering of the priorities is somehow random with respect to the keys. Our
analysis assumed the priorities were truly random, but it can be shown that a limited form
of randomness that arise out of relatively simple hash functions is sufficient.

2. In cryptography hash functions can be used to hide information. One such application is
in digital signatures where a so-called secure hash is used to describe a large document
with a small number of bits.

3. A one-way hash function is used to hide a string, for example for password protection.
Instead of storing passwords in plain text, only the hash of the password is stored. To verify
whether a password entered is correct, the hash of the password is compared to the stored
value. These signatures can be used to authenticate the source of the document, ensure
the integrity of the document as any change to the document invalidates the signature, and
prevent repudiation where the sender denies signing the document.

4. String commitment protocols use hash functions to hide to what string a sender has
committed so that the receiver gets no information. Later, the sender sends a key that
allows the receiver to reveal the string. In this way, the sender cannot change the string
once it is committed, and the receiver can verify that the revealed string is the committed
string. Such protocols might be used to flip a coin across the Internet: The sender flips
a coin and commits the result. In the mean time the receiver calls heads or tails, and the
sender then sends the key so the receiver can reveal the coin flip.

5. Hashing can be used to approximately match documents, or even parts of documents.
Fuzzy matching hashes overlapping parts of a document and if enough of the hashes
match, then it concludes that two documents are approximately the same. Big search
engines look for similar documents so that on search result pages they don’t show the
many slight variations of the same document (e.g., in different formats). It is also used in
spam detection, as spammers make slight changes to email to bypass spam filters or to
push up a document’s content rank on a search results page. When looking for malware,
fuzzy hashing can quickly check if code is similar to known malware. Geneticists use it to
compare sequences of genes fragments with a known sequence of a related organism as a
way to assemble the fragments into a reasonably accurate genome.

6. Hashing is used to implement hash tables. In hash tables one is given a set of keys K C «
and needs to map them to a range of integers so they can stored at those locations in
an array. The goal is to spread the keys out across the integers as well as possible to
minimize the number of keys that collide in the array. You should not confuse the terms
hash function and hash table. They are two separate ideas, and the latter uses the former.

November 19, 2014 (DRAFT, PPAP)

18.1. HASH TABLES 289

There is a deep and interesting theory of hash functions. Depending on the application, the
needs of the hash function are very different. We will not cover the theory here but you will
likely see it in more advanced algorithms classes.

For hash table applications a hash function should have the following properties:

e [t should distribute the keys evenly so that there are not many collisions.

e It should be fast to compute.

Here we consider some simple ones. For hashing integers we can use

h(z) = (ax + b) mod p

where @ € [1,...,p —1],b € [0,...,p — 1], and p is a prime. This is called a linear
congruential hash function has some nice properties that you will likely learn about in 15-451.

For strings we can simply use a polynomial

Sequentially, Horner’s method avoids computing a’ explicitly. In parallel, simply use scan with
multiplication. This hash function tends to mix bits from earlier characters with bits in later
characters.

In our analysis we will assume that we have hash functions with the following idealized
property called simple uniform hashing: The hash function uniformly distributes the n keys over
the range [0, ..., m — 1] and the hash value for any key is independent of the hash value for any
other key.

18.1 Hash Tables

Hash tables are used when an application needs to maintain a dynamic set where the main
operations are insert, find and delete. Hash tables can implement the abstract data types
Set and Table. Unlike binary search trees, which require the universe of keys has a total
ordering, hash tables do not. A total ordering enables the additional ordering operations provided
by the Ordered Set abstract data type.

The main issue with hash table is collisions, where two keys hash to the same location. Is it
possible to avoid collisions? Not if we don’t know the set of keys in advance. Since the size of
the table 7" is much smaller than the universe of keys U, |T'| < |U|, there must exist at least two
keys that map to the same index, by the Pigeonhole Principle: If you put more than m items

November 19, 2014 (DRAFT, PPAP)

290 CHAPTER 18. HASHING

into m bins, then at least one bin contains more than one item. For a particular hash function,
the subset of keys iK' C U that we want to hash may or may not cause a collision even when
the number of keys is much smaller than the size of the table. Therefore, for general purpose
dynamic hash tables we have to assume that collisions will occur.

How likely is there at least one collision? This is the same question as the birthday paradox:
When there a n or more people in a room, what is the chance that two people have the same
birthday? It turns out that for a table of size 365 you need only 23 keys for a 50% chance of
a collision, and as little as 60 keys for a 99% chance. More interestingly, when hashing to m

locations, you can expect a collision after only 4/ %W m insertions, and can expect every location

in the table to have an element after ©(m logm) insertions. The former is related to the birthday
paradox, whereas the latter is related to the coupon collector problem.

There are several well-studied collision resolution strategies:

e Separate chaining: For each bin store a linked list of all keys that hash to that bin.

e Open addressing: Place all keys directly into bins (one key per bin), but if multiple keys
hash to the same bin, then all but one of them in “nearby” bins.

e Perfect hashing: When the keys are known in advance, it is possible to construct hash
functions that avoid collisions entirely, by using a two level hash funtion.

e Multiple-choice hashing and Cuckoo hashing: A special case of open addressing in
which every key is placed in only one of two locations % (k) or hy(k).

Example 18.2. Different types of hash tables. The grey indicates the location is already
Sfull with another key.

I e B L G e B [[T] |
hy ha(k) — k|

-] h(k2) — K] ol] H
h) k] hko) =] hew sl T T] o =[]

B] | hs(k) N

separate chaining open addressing perfect hashing cuckoo hashing

We will consider the first two in this lecture.

In our discussion, we will assume we have a set of n keys K that we want to store and a hash
function h : key — [0,...,m — 1] for some m.

November 19, 2014 (DRAFT, PPAP)

18.2. SEPARATE CHAINING 291

18.2 Separate Chaining

In 15-122 you studied hash tables using separate chaining. As you may recall, the idea is to
maintain an array of linked lists. All keys that hash to the same location (bin) in the sequence
are maintained in a linked list. To find a key a key &, go to the location i(k), and search the list
belonging to that location for that key. To insert a key, first try to find the key. If the key is in the
list, then possibly replace it with the new value (depending on the semantics of insert), otherwise
add the key to either the start or the end of the list.

The costs of these operations is related to the average length of a chain, which is n/m when
there are n keys in a table with m chains. We call A = n/m the load factor of the table.

When searching for a key the key might or might not be in the table. We refer to the two
cases as a successful search and an unsuccessful search, respectively. Assuming that we can
compute h(k) in O(1) work, we then have:

Claim 18.4. For simple uniform hashing, an unsuccessful search takes expected ©(1+ \)
work.

Proof. The average length of a list is A. If we search for a key that is not in the table, we
need to search the whole list to determine the key is not in the table. Including the cost
of computing h(k), the total work is ©(1 + \). O

Claim 18.5. For simple uniform hashing, a successful search takes expected (1 + \)
work.

Proof. To simplify the analysis, we assume that keys are added at the end of the chain®.
The cost of a successful search is the same as an unsuccessful search at the time the key
was added to the table. That is, when we first insert a key, the cost to insert it is the same
as the cost of an unsuccessful search. Suppose this cost is 7. Subsequent searches for
this key is also 7},. When the table has 7 keys, the cost of inserting a new key is expected
to be (1 4 i/m). Averaging over all keys, the cost of a successful search is

n—1

%Z(l-l—i/m) _ %(n+n(n— 1)/(@2m)) = 1+ (n—1)/(2m) < 1+ /2 = O(1+ 1)

=0

0

“The average successful search time is the same whether new keys are added to the front of the end of
the chain.

November 19, 2014 (DRAFT, PPAP)

292 CHAPTER 18. HASHING

That is, for successful searches we examine half the list on average and unsuccessful searches
the full list. If n = O(m) then with simple uniform hashing, all operations have expected O(1)
work and span. Even more importantly, some chains can be long, O(n) in the worst case, but
it is expectation they will have length A\. The advantage of separate chaining is that it is not
particularly sensitive to the size of the table. If the number of keys is more than anticipated, the
cost of search becomes only somewhat worse. If the number is less, then only a small amount of
space in the table is wasted and the cost of search is faster.

18.3 Open Address Hash Tables

The next technique does not need any linked lists but instead stores every key directly in the
locations of an array, which we will refer to as cells. Open address hashing using so-called
linear probing has an important practical advantage over separate chaining: it causes fewer cache
misses since typically all locations that are checked are on the same cache line.

The basic idea of open addressing is to maintain an array that is some constant factor larger
than the number of keys and to store all keys directly in this array. Every cell in the array is
either empty or contains a key.

To decide to which cells to assign a key, open addressing uses an ordered sequence of
locations in which the key can be stored. In particular let’s assume we have a function h(k, 1)
that returns the ' location for key k. We refer to the sequence

(h(k,0), h(k, 1), h(k,2),...)

as the probe sequence. We will get back to how the probe sequence might be assigned, but let’s
first go through how these sequences are used. When inserting a key the basic idea is to try each
of the locations in order until we find a cell that is empty, and then insert the key at that location.
Sequentially, insert would look like:

Algorithm 18.6 (Insertion into an Open Address Hash Table).

1 function insert(T,k) =
2 let
3 function insert’(T,k,i) =

4 case Ty, of

5 NONE = update(T,h(k,i),k)
6 | SoME(K') =

7 if (k=%k) then T

8 else insert’(T,k,i+1)

9 in

10 insert’(T,k,0)

11 end

November 19, 2014 (DRAFT, PPAP)

18.3. OPEN ADDRESS HASH TABLES 293

Example 18.7. Suppose the hash table has the following keys:

o1 2 3 4 5 6 7
T= B E A F

Now if for a key D we had the probe sequence (1,5,3,- -), then we would find location
1 and 5 full (with B and E) and place D in location 3 giving:

o0 1 2 3 4 5 6 7
T= B D E A F

Note that for the update operation to be constant work and span, 7" must be a single threaded
array. Also, the insertion algorithm will loop forever if all locations are full. Such an infinite loop
can be prevented by ensuring that h(k, i) tries every location as ¢ is incremented, and checking
when the table is full. Also, as described, the algorithm will insert the same key multiple times
over. This problem is easily corrected by checking if the key is in the table and if so returning
immediately.

To search we have the following code:

Algorithm 18.8 (Hash find).

1 function find(T,k) = let
2 function find’(T,k,i) =
3 case T'[h(k,i)] of

4 NONE = false

5 | SOME(kK') =

6 if (k = k’) then true
7 else find’ (T, k,i+ 1)

8

in £find(T,k,0) end

Example 18.9. In the table

0 1 2 3 4 5 6 7
T= B D E A F

if key E has the probe sequence (7,4,2,---), find(T, E) would first search location 7,
which is full, and then location 4 where it finds E.

Let’s say we deleted A from the table above, and then searched for D. Will £ind locate
it? No, it will stop looking once it finds the empty cell where A was. One solution might be to
rehash everything after a delete. But that would be an extremely expensive operation for every
delete. An alternative is to use what is called a lazy delete. Instead of deleting the key, simply
replace the key with a special Ho1d value. That is, introduce an entry data type:

November 19, 2014 (DRAFT, PPAP)

294 CHAPTER 18. HASHING

datatype a entry = Empty | Hold | Full of «

For £1ind, simply skip over a Ho1d entry and move to the next probe. insert(v) can replace
the first Hold entry with Full(v). Butif insert needs to check for duplicate keys, it first
needs to search for the key. If it finds the key it overwrites it with the new value. Otherwise it
continues until it finds an empty cell, at which point it can replace the first Ho1d in the probe
sequence.

The main concern with lazy deletes is that they effectively increase the load factor, increasing
the cost of the hash table operations. If the load factor becomes large and performance degrades,
the solution is to rehash everything to a new larger table. The table should be a constant fraction
larger each time the table grows so as to maintain amortized constant costs.

Now let’s consider some possible probe sequences we can use. Ideally, we would like a
key to use any of the possible m! probe sequences with equal probability. This ideal is called
uniform hashing. But uniform hashing is not practical. Common probe sequences, which we
will consider next, are

e linear probing
e quadratic probing

e double hashing

18.3.1 Linear Probing

In linear probing, to insert a key £, it first checks h(k) and then checks each following location
in succession, wrapping around as necessary, until it finds an empty location. That is, the *"
probe is

h(k,i) = (h(k) +i) mod m.

Each position determines a single probe sequence, so there are only m possible probe sequences.

The problem with linear probing is that keys tend to cluster. It suffers from primary clustering:
Any key that hashes to any position in a cluster (not just collisions), must probe beyond the
cluster and adds to the cluster size. Worse yet, primary clustering not only makes the probe
sequence longer, it also makes it more likely that it will be lengthen further.

What is the impact of clustering for an unsuccessful search? Let’s consider two extreme
examples when the table is half full, A\ = 1/2 (or equivalently, m = 2n). Clustering is minimized
when every other location in the table is empty. In this case, the average number of probes
needed to insert a new key & is 3/2: One probe to check cell 4 (k), and with probability 1/2 that
cell is full and it needs to look at the next location which, by construction, must be empty. In the
worst case, all the keys are clustered, let’s say at the end of the table. If k£ hashes to any of the
first n locations, only one probe is needed. But hashing to the n*" location would require probing
all n full locations before finally wrapping around to find an empty location. Similarly, hashing

November 19, 2014 (DRAFT, PPAP)

18.3. OPEN ADDRESS HASH TABLES 295

to the second full cell, requires probing (n — 1) full cells plus the first empty cell, and so forth.
Thus, under uniform hashing the average number of probes needed to insert a key would be

Il+n+n—1)+n—-2)+...+1]/m=14+nn+1)/2m =~ n/4

Even though the average cluster length is 2, the cost for an unsuccessful search is n/4. In
general, each cluster j of length n; contributes n;(n; 4+ 1)/2 towards the total number of probes
for all keys. Its contribution to the average is proportional the square of the length of the cluster,
making long cluster costly.

We won’t attempt to analyze the cost of successful and unsuccessful searches, as considering
cluster formation during linear probing is quite difficult. We make the following claim:

Claim 18.10. When using linear probing in a hash table of size m that contains n = Am
keys, the average number of probes needed for an unsuccessful search or an insert is

(=)
e 1),

As you can see from the following table, which shows the expected number of probes under
uniform hashing, the performance of linear probing degrades significantly when the load factor
increases:

A 174 172 2/3 3/4 9/10

successful 1.2 15 20 30 55
unsuccessful 14 2.5 5.0 85 50.5

and for a successful search is

Linear probing is quite competitive, though, when the load factors are in the range 30-70%
as clusters tend to stay small. In addition, a few extra probes is mitigated when sequential access
is much faster than random access, as in the case of caching. Because of primary clustering,
though, it is sensitive to quality of the hash function or the particular mix of keys that result in
many collisions or clumping. Therefore, it may not be a good choice for general purpose hash
tables.

18.3.2 Quadratic Probing

Quadratic probe sequences cause probes to move away from clusters, by making increasing
larger jumps. The ** probe is

h(k,i) = (h(k) +14*) mod m.

November 19, 2014 (DRAFT, PPAP)

296 CHAPTER 18. HASHING

Although, quadratic probing avoids primary clustering, it still has secondary clustering:
When two keys hash to the same location, they have the same probe sequence. Since there are
only m locations in the table, there are only m possible probe sequences.

One problem with quadratic probing is that probe sequences do not probe all locations in
the table. But since there are (p 4+ 1)/2 quadratic residues when p is prime, we can make the
following guarantee.

Claim 18.11. If m is prime and the table is at least half empty, then quadratic probing
will always find an empty location. Furthermore, no locations are checked twice.

Proof. (by contradiction) Consider two probe locations h(k)+i% and h(k)+52,0 < i,j < [m/2].
Suppose the locations are the same but ¢ # j. Then

h(k) + 4% = (h(k) + %) mod m
i*=34% modm
i?—j3?=0 modm
(i—7)(i+7)=0 modm

Therefore, since m is prime either ¢ — j or ¢ 4 j are divisible by m. But since both ¢ — j and
1 + 7 are less than m, they cannot be divisible by m. Contradiction.

Thus the first [m /2] probes are distinct and guaranteed to find an empty location. O

Computing the next probe is only slightly more expensive than linear probing as it can be
computed without using multiplication:

hi — hi—1 = (i* — (i —1)*) mod m
hi = (hi-1+2i—1) mod m

Unfortunately, requiring that the table remains less than half full makes quadratic probing
space inefficient.

18.3.3 Double Hashing

Double hashing uses two hash functions, one to find the initial location to place the key and a
second to determine the size of the jumps in the probe sequence. The i*" probe is

h(k,i) = (ha(k) + i - ho(k)) mod m.

Keys that hash to the same location, are likely to hash to a different jump size, and so will have
different probe sequences. Thus, double hashing avoids secondary clustering by providing as
many as m? probe sequences.

November 19, 2014 (DRAFT, PPAP)

18.3. OPEN ADDRESS HASH TABLES 297

How do we ensure every location is checked? Since each successive probe is offset by hy(k),
every cell is probed if hy(k) is relatively prime to m. Two possible ways to ensure hy(k) is
relatively prime to m are, either make m = 2* and design hy(k) so it is always odd, or make m
prime and ensure hy(k) < m. Of course, hy(k) cannot equal zero.

Double hashing behaves quite closely to uniform hashing for careful choices of h; and hs.
Under uniform hashing the average number of probes for an unsuccessful search or an insert is

at most 1
T+ A+ 4= ——
+A+ X+ (1 — A)

and for a successful search is at most

()

The former bound is because the probability of needing more than 7 probes is at most \‘. A
search always needs one probe, and with probability A needs a second probe, and with probability
A? needs a third probe, and so on. The bound for a successful search for a key & follows the same
probe sequences as when it was first inserted. So if k was the (j + 1) key inserted the cost for
inserting it is at most 1 /(1 — j/m). Therefore the average cost of a successful search is at most

—Z

l—j/m

I JL
/—\ .

IN

(Inm+1—In(m —n))

N S e

The table below shows the expected number of probes under the assumption of uniform
hashing and is the best one can expect by open addressing.

A 174 172 2/3 3/4 9/10

successful 12 14 16 1.8 26
unsuccessful 1.3 2.0 3.0 4.0 10.0

Comparing these numbers with the numbers in the table for linear probing, the linear probing
numbers are remarkable close when the load factor is 50% or below.

The main advantage with double hashing is that it allows for smaller tables (higher load
factors) than linear or quadratic probing, but at the expense of higher costs to compute the next
probe. The higher cost of computing the next probe may be preferable to longer probe sequences,
especially when testing two keys equal is expensive.

November 19, 2014 (DRAFT, PPAP)

298 CHAPTER 18. HASHING

18.4 Hash Table Summary

Hashing is a classic example of a space-time tradeoff: increase the space so table operations are
faster; decrease the space but table operations are slower.

Separate chaining is simple to implement and is less sensitive to the quality of the hash
function or load factors, so it is often the choice when it is unknown how many and how frequently
keys may be inserted or deleted from the hash table. On the other hand open addressing can
be more space efficient as there are no linked lists. Linear probing has the advantage that it
has small constants and works well with caches since the locations checked are typically on
the same cache line. But it suffers from primary clustering, which means its performance is
sensitive to collisions and to high load factors. Quadratic probing, on the other hand, avoids
primary clustering, but still suffers from secondary clustering and requires rehashing as soon as
the load factor reaches 50%. Although double hashing reduces clustering, so high load factors
are possible, finding suitable pairs of hash functions is somewhat more difficult and increases the
cost of a probe.

18.5 Parallel Hashing

In the parallel context, instead of inserting, finding or deleting one key at a time, each operation
takes a set of keys. Since a hash function distributes keys across slots in the table, we can expect
many keys will be hashed to different locations. The idea is to use open addressing in multiple
rounds. For insert, each round attempts to write the keys into the table at their appropriate
hash position. For any key that cannot be written because another key is already there, the key
continues for another round using its next probe location. Rounds repeat until all keys are written
to the table.

In order to prevent writing to a position already occupied in the table, we introduce a variant
of the in ject function. The function

injectCond(l,S) : (int x «a) seq x (a option) seq — (o option) seq

takes a sequence of index-value pairs ((i1, v1), ..., (i,, v,)) and a target sequence S and con-
ditionally writes each value v; into location ¢; of S. In particular it writes the value only if the
location is set to NONE. If there are two or more values with the same index (a conflict) then
it conditionally writes the value only for the first occurrence of the index (recall that inject
uses the last occurrence of an index). Resolving conflicts in in jectCond can be implemented
using a parallel primitive called write-with-min?.

2For more information, see the paper Reducing Contention Through Priority Updates by Julian Shun, Guy
Blelloch, Jeremy Fineman and Phillip Gibbons: http://www.cs.cmu.edu/~jshun/contention.pdf.

November 19, 2014 (DRAFT, PPAP)

http://www.cs.cmu.edu/~jshun/contention.pdf

18.5. PARALLEL HASHING 299

Algorithm 18.12 (Parallel Insertion with Open Addressing).

1 function insert(T,K) = let
2 val © = 0

3 while (|K|>0) with (T, K,1)

4 val T = ((h(k,i),k): ke K)

5 val T = injectCond(I,T)

6 val K = (ke K |T[h(k,i)] # Some(k))
7 val ¢« = 7+4+1

8 in 7' end

For round i, insert uses each key’s i*" probe in its probe sequence and attempts to write
the key to the table. To see whether it successfully wrote a key to the table, it reads the value
written to the table and checks if it is the same as the key. In this way it can filter out all keys
that it successfully wrote to the table. It repeats the process on the keys it didn’t manage to write,
using the keys’ (7 + 1) probes.

Example 18.13. Consider a table with the following entries before round i:

o1 2 3 4 5 6 7
T = A B D C

IfK = (E, F), h(E,0) = 1, and h(F,0) = 2, then on the first round I = ((1,E), (2,F))
and the in jectCond would fail to write E to index 1 but would succeed in writing F'
to index 2 resulting in the following table:

01 2 3 4 5 6 7
T = A F B D C

On the next iteration we have K = (E)andi =1+ 1= 1.

Note that if 7" is implemented using a single threaded array, then parallel i nsert basically
does the same work as the sequential version adding the keys one by one. The only difference is
that the parallel version may add keys to the table in a different order than the sequential.

November 19, 2014 (DRAFT, PPAP)

300 CHAPTER 18. HASHING

Example 18.14. With linear probing, the parallel version adds F first using I probe and
then adds E at index 4 using 4 probes:

o1 2 3 4 5 6 7
Tp = A F B E D C

Whereas, the sequential version might add E first using 2 probes, and then F using 3
probes:

0

1 2 3 4 5
Ts = A E B F

7
C

(w]leN

Both versions make 5 probes in the table.

Since we showed that, with suitable hash functions and load factors, the expected cost of
insert is O(1), the expected work for the parallel version is O(| K). In addition, in each round,
the expected size of K decreases by a constant fraction, so the span is O(log | K|).

18.6 Comparison to Tree Tables

e Searches are faster in expectation

e Insertions are faster in expectation

e Map, reduce, and filter remain linear work
e Union/merge can be slower.

In contrast to a tree table, a hash table cannot support range queries efficiently since it does
not maintain any order on the keys.

November 19, 2014 (DRAFT, PPAP)

	Hashing
	Hash Tables
	Separate Chaining
	Open Address Hash Tables
	Linear Probing
	Quadratic Probing
	Double Hashing

	Hash Table Summary
	Parallel Hashing
	Comparison to Tree Tables

