
Chapter 3

Example: Genome Sequencing

Sequencing of a complete human Genome (genetic material encoded in the DNA) represents
one of the greatest scientific achievements of the century. The efforts started a few decades ago
and includes the following major landmarks:

1996 sequencing of first living species
2001 draft sequence of the human Genome
2007 full human Genome diploid sequence

Efficient parallel algorithms played a crucial role in all these achievements. In this lecture,
we will take a look at some algorithms behind the results—and the power of problem abstraction
which will reveal surprising connections between seemingly unrelated problems.

As with many “real world” applications just defining precisely the problem that models
our application is interesting in itself. We therefore start with the vague and not well-defined
problem of “sequencing the human genome” and convert it into a precise algorithmic problem.
To come up with this problem we will assume that the sequencing is done using a particular
method, called the shotgun method.

3.1 The Shotgun Method

Question 3.1. Do you have any ideas about what makes genome sequencing hard?

What makes sequencing the genome hard is that there is currently no way to read long strands
with accuracy. Current DNA sequencing machines are only capable of efficiently reading rel-
atively short strands, e.g., 1000 base pairs, compared to the over three billion contained in the
whole human genome. Scientists therefore cut strands into shorter fragments and then reassem-
ble the pieces.

41

42 CHAPTER 3. EXAMPLE: GENOME SEQUENCING

Figure 3.1: A jigsaw puzzle.

Figure 3.2: Water lilies by Claude Monet. We think of the patches of color as water lilies even
though they are just that, patches of color.

Primer walking. A technique called “primer walking” can be used to cut the DNA strands
into consecutive fragments and sequence each one. Each step of the process is slow because
one needs the result of one fragment to “build” in the wet lab the molecule needed to find the
following fragment. Note that primer walking is an inherently sequential technique as a step
depends on the previous, making it difficult to parallelize and thus speed up.

Question 3.2. Can you think of a way to parallelize primer walking?

One possible way to parallelize primer walking is to divide the genome into a many fragments
and sequence them all in parallel. The shortcoming of this approach is that we don’t know how
to put them together, because we have mixed up the fragments and lost their order.

Example 3.3. When cut, the strand cattaggagtat might turn into, ag, gag, catt, tat,
destroying the original ordering.

Question 3.4. The problem of putting together the pieces is a bit like solving a jigsaw
puzzle. But it is harder. Can you see why? Can you think of a way of turning this into a
jigsaw puzzle that we can solve?

April 29, 2015 (DRAFT, PPAP)

3.1. THE SHOTGUN METHOD 43

The shotgun method. When we cut a genome into fragments we lose all the information
about how the fragments are connected. If we had some additional information about how to
connect them, we can imagine solving this problem just as we solve a jigsaw puzzle.

Question 3.5. Can you think of a way to relate different pieces?

One way to get additional information about how to join the fragments is to make multiple
copies of the original sequence and generate many fragments that overlap. When a fragment
overlaps with two others, it can tell us how to connect those two. This is the idea behind the
shotgun (sequencing) method, which today seems to be the standard technique for genome
sequencing.

Example 3.6. For example, for the sequence cattaggagtat, we produce three copies:

cattaggagtat
cattaggagtat
cattaggagtat

We then divide each into fragments

catt ag gagtat
cat tagg ag tat
ca tta gga gtat

Note how each cut is “covered” by an overlapping fragment telling us how to reverse
the cut.

Based on this idea, the shotgun method works as follows.

1. Take a DNA sequence and make multiple copies.

2. Randomly cut the sequences using a “shotgun” (actually using radiation or chemicals).

3. Sequence each of the short fragments, which can be performed in parallel with multiple
sequencing machines.

4. Reconstruct the original genome from the fragments.

Steps 1–3 are done in a wet lab, while step 4 is the interesting algorithmic component.

Question 3.7. In step 4, is it always possible to reconstruct the sequence?

April 29, 2015 (DRAFT, PPAP)

44 CHAPTER 3. EXAMPLE: GENOME SEQUENCING

Unfortunately it is not always possible to reconstruct the exact original genome in step 4. For
example, we might get unlucky and cut all sequences in the same location. Even if we do
cut them in different locations there are many DNA strings that lead to the same collection of
fragments. A particularly challenging problem is repetition. For example, just repeating the
original string twice can lead to the same set of fragments if the two sequences are always cut
at their seam.

3.2 Defining the Problem

Given that there might be an infinite number of solutions and that we may not always hope to
find the actual genome, we wish to define a problem that makes precise the “best solution” that
we wish to find.

Question 3.8. How can we make this intuitive notion of a “best solution” precise?

It is not easy to make this notion of best solution precise. This is why, it can be as difficult and
important to formulate a problem as it is to solve it. But as we will see, we can come pretty
close to a realistic solution.

Question 3.9. Can you think of a property that the result needs to have in relation to
the fragments?

Note that since the fragments all come from the original genome, the result should at least
contain all of them. In other words, it is a superstring of the fragments. As mentioned earlier,
however, there will be multiple superstrings for any given set of fragments.

We can take one more step in making the problem more precise by constructing the “best”
superstring.

Question 3.10. Which of the many superstrings should we pick?

How about the shortest superstring? This would give us the simplest explanation, which is often
desirable. The principle of selecting the simplest explanation is often referred to as Occam’s
razor (see Figure ??) .

Problem 3.11 (The Shortest Superstring (SS) Problem). Given an alphabet set Σ and a
set of finite-length strings S ⊆ Σ+, return a shortest string r that contains every s ∈ S
as a substring of r.

April 29, 2015 (DRAFT, PPAP)

3.3. BRUTE-FORCE ALGORITHM 1 45

Figure 3.3: William of Occam (or Ockham, 1287-1347) posited that among competing hy-
potheses that explain some data, the one with the fewest assumptions or shortest description
is the best one. The term “razor” apparently refers to shaving away unnecessary assumptions,
although here is a more modern take on it.

In the definition the notation Σ+, the “Kleene plus”, means the set of all possible non-empty
strings consisting of characters Σ. Note that, for a string s to be a substring of another string r,
s must as a contiguous block in r. That is, “ag” is a substring of “ggag” but is not a substring
of “attg”.

We will define the genome-sequencing problem as the problem of finding the shortest su-
perstring that contains all the fragments, i.e., given a set of fragments, construct the shortest
string that contains all of them. For genome sequencing, we have Σ = {a, c, g, t}. We have
thus converted a vague problem, sequencing the genome, into a concrete problem, the SS prob-
lem. As suggested by the discussion thus far and further discussed at the end of this chapter,
the SS problem might not be exactly the right abstraction for the application of sequencing the
genome, but it is a good start.

Having specified the problem, we are ready to design an algorithm, in fact a few algorithms,
for solving it. Let’s start with a brute-force algorithm.

3.3 Brute-Force Algorithm 1

As discussed in Section 1.3 the brute-force technique consist of trying all candidate solutions
and selecting the best (or any) valid solution. For the SS problem a solution is valid if it is a
superstring of all the input strings, and we want to pick the shortest of these strings.

We consider two brute force solutions. The first is simply to consider all strings r ∈ Σ+,

April 29, 2015 (DRAFT, PPAP)

46 CHAPTER 3. EXAMPLE: GENOME SEQUENCING

and for each r to check if every string s ∈ S is a substring. It turns out that such a check can
be done efficiently, although we won’t describe how here. We then pick the shortest r that is
indeed a superstring of all s ∈ S. The problem, however, is that there are an infinite number of
strings in Σ+ so we cannot check them all, but perhaps we can be a little smart about picking
the candidate solutions r.

Question 3.12. Do we really have to consider all strings?

We only need to consider strings up to length m =
∑

s∈S |s| since we can easily construct a
superstring by concatenating all strings. Since the length of such a string is m, the shortest
superstring has length at most m.

Question 3.13. How many string of length m are there?

Unfortunately, there are still |Σ|m strings of length m; this number is not infinite but still very
large. For the sequencing the genome Σ = 4 and m is in the order of billions, giving something
like 41,000,000,000. There are only about 1080 ≈ 4130 atoms in the universe so there is no feasible
way we could apply the brute force method directly. In fact we can’t even apply it to two strings
each of length 100.

3.4 Understanding the Structure of the Problem

This brute force-algorithm is rather disappointing. We can improve it quite a bit it turns out but
we have make some observations.

Observation 1: Snippets. Note that in solving the superstring problem we can ignore strings
that are contained in other strings. For example, if we have gagtat, ag, and gt, we can throw
out ag and gt. In the context of the genome sequencing problem, we will refer to the fragments
that are not contained in others as snippets.

Example 3.14. In our example, we had the following fragments.

catt ag gagtat
cat tagg ag tat
ca tta gga gtat

Our snippets are now:

S =
{

catt,gagtat, tagg, tta,gga
}
.

The other fragments {cat,ag, tat, ca,gtat} are all contained within the snippets.

April 29, 2015 (DRAFT, PPAP)

3.5. BRUTE FORCE ALGORITHM 2 47

Since no snippet can be contained in another, in the result superstring, snippets cannot start at
the same position, and if one starts after another, it must finish after the other. This leads to our
second observation.

Observation 2: Ordering of the snippets. In any superstring, the start positions of the snip-
pets is a strict (total) ordering, which is the same ordering as their finish positions.

We are now ready to solve the SS problem by designing algorithms for it. Designing algo-
rithms may appear to be an intimidating task, because it may seem as though we would need
brilliant ideas that come out of nowhere. Like the water lilies of Monet, this is just an appear-
ance. In reality, we design algorithms by starting with simple ideas based on several well-known
techniques and refine them until we reach the desired result, much like a painter constructing a
painting with simple but deliberate brush strokes.

In the rest of this section, we will consider three algorithmic techniques that can be applied
to this problem and derive an algorithm from each.

3.5 Brute Force Algorithm 2

We now consider a second brute force solution. In addition to requiring less computational
work, the approach will also help us understand other possible solutions, which we look at next.
In the last section we mentioned that snippets have to start in some ordering in any superstring.
If this is the case, we can try all possible orderings of the snippets. One of the orderings has to
be the right ordering for the shortest superstring. The question remains of how once we pick an
ordering, we then find the shortest superstring for that ordering. For this purpose we will use
the following theorem.

Theorem 3.15 (Removing Overlap). Given any start ordering of the snippets s1, s2, . . . , sn, re-
moving the maximum overlap between each adjacent pair of snippets (si, si+1) gives the shortest
superstring of the snippets for that start ordering.

Example 3.16. For our running example, consider the following ordering

catt tta tagg gga gagtat

When the maximum overlaps are removed (the excised parts are underlined) we get
cattaggagtat, which is indeed the shortest superstring for the given start ordering (in-
deed it is also the overall shortest).

Proof. The theorem can be proven by induction. The base case is true since it is clearly true
for a single snippet. Inductively, we assume it is true for the first i snippets, i.e. that removing
the maximum overlap between adjacent snippets among these i is the shortest superstring of

April 29, 2015 (DRAFT, PPAP)

48 CHAPTER 3. EXAMPLE: GENOME SEQUENCING

s1, . . . , si starting in that order. We refer to this superstring as ri. We now prove that if it is
true for ri then it is true for ri+1. Note that when we add the snippet si+1 after ri it cannot fully
overlap with the previous snippet (si) by the definition of snippets. Therefore when we add it
on using the maximum overlap, the string ri+1 will be ri with some new characters added to the
end. This will still be a superstring of all the first i snippets since we did not modify ri, plus it
will also be a superstring of si+1, since we are including it at the end. It will also be the shortest
since ri is the shortest for s1, . . . si (starting in that order) and by picking the maximum overlap
we added the least number of additional characters to get a superstring for s1, . . . si+1

This theorem tells us that we can try all permutations of the snippets, calculate the length of
each one by removing the overlaps and pick the best.

Exercise 3.17. Try a couple other permutations and determine the length after removing
overlaps.

We now look at the work required for this second brute-force algorithm. There are n! per-
mutations on a collection of n elements each of which has to be tried. For n = 10 strings this is
probably feasible, which is better than our previous technique that did not even work for n = 2.
However for n = 100, we’ll need to consider 100! ≈ 10158 combinations, which is still more
than the number of atoms in the universe. As such, the algorithm is still not going to be feasible
for large n.

Question 3.18. Can we come up with a smarter algorithm that solves the problem
faster?

Unfortunately the SS problem turns out to be NP-hard, although we will not show this.

Question 3.19. Is there no way to efficiently solve an instance of an NP-hard problem?

When a problem is NP hard, it means that there are instances of the problem that are difficult
to solve. NP-hardness doesn’t rule out the possibility of algorithms that quickly compute near
optimal answers or algorithms that perform well on real world instances. For example the type-
checking problem for the ML language is NP-hard but we use ML type-checking all the time
without problems, even on programs with thousands of variables.

For this particular problem, we know efficient approximation algorithms that (1) give theo-
retical bounds that guarantee that the answer (i.e., the length) is within a constant factor of the
optimal answer, and (2) that in practice perform even better than the bounds suggest.

April 29, 2015 (DRAFT, PPAP)

3.6. REDUCTION TO THE TRAVELING-SALESPERSON PROBLEM 49

Figure 3.4: A poster from a contest run by Proctor and Gamble in 1962. The goal was to solve
a 33 city instance of the TSP. Gerald Thompson, a Carnegie Mellon professor, was one of the
winners.

3.6 Reduction to the Traveling-Salesperson Problem

Another approach to solving a problem is to reduce it to another problem which we understand
better and for which we know algorithms, or possibly even have existing code. It is sometimes
quite surprising that problems that seem very different can be reduced to each other. Note that
reductions are sometimes used to prove that a problem is NP-hard (i.e. if you prove that using
polynomial work you can reduce an NP-complete problem A to problem B, then B must also
be NP-complete). That is not the purpose here. Instead we want the reduction to help us solve
our problem.

In particular we consider reducing the shortest superstring problem to another seemingly
unrelated problem: the traveling salesperson (TSP) problem.

Question 3.20. Are you all familiar with the TSP problem?

April 29, 2015 (DRAFT, PPAP)

50 CHAPTER 3. EXAMPLE: GENOME SEQUENCING

The TSP problem is a canonical NP-hard problem dating back to the 1930s and has been ex-
tensively studied, e.g. see Figure ??. The two major variants of the problem are symmetric
TSP and asymmetric TSP, depending on whether the graph has undirected or directed edges,
respectively. The particular variant we’re reducing to is the asymmetric version, which can be
described as follows.

Problem 3.21 (The Asymmetric Traveling Salesperson (aTSP) Problem). Given a
weighted directed graph, find the shortest path that starts at a vertex s and visits all
vertices exactly once before returning to s.

That is, find a Hamiltonian cycle of the graph such that the sum of the edge weights along
the cycle is the minimum of all such cycles (a cycle is a path in a graph that starts and ends at
the same vertex, and a Hamiltonian cycle is a cycle that visits every vertex exactly once). You
can think of the TSP problem as the problem of coming up with best possible plan for your
annual road trip.

Motivated by the observation that the shortest superstring problem can be solved exactly by
trying all permutations, we’ll make the TSP problem try all the permutations for us.

Question 3.22. Can we set up the TSP problem so that it tries all permutations for us?

For this, we will set up a graph so that each valid Hamiltonian cycle corresponds to a permu-
tation. The graph will be complete, containing an edge between any two vertices, and thus
guaranteeing the existence of a Hamiltonian cycle.

Let overlap(si, sj) denote the maximum overlap for si followed by sj .

Example 3.23. For “tagg” and “gga”, we have overlap (“tagg”,“gga”) = 2.

The Reduction. Now we build a graph D = (V,A).

• The vertex set V has one vertex per snippet and a special “source” vertex Z where the
cycle starts and ends.

• The arc (directed edge) from si to sj has weight wi,j = |sj| − overlap(si, sj). This
quantity represents the increase in the string’s length if si is followed by sj .

For example, if we have “tagg” followed by “gga”, then we can generate “tagga” which
only adds 1 character giving a weight of 1—indeed, |“gga”|−overlap(“tagg”, “gga”) =
3− 2 = 1.

April 29, 2015 (DRAFT, PPAP)

3.6. REDUCTION TO THE TRAVELING-SALESPERSON PROBLEM 51

Z

catt

tta

gagtat

tagg

gga

0 4
0

3

0
60

3
0

4

4
4

41

3
6

4
1

6
3

Figure 3.5: Reduction to TSP example (not all edges are shown).

• The weights for arcs incident to Z are set as follows: (Z, si) = |si| and (si, Z) = 0. That
is, if si is the first string in the permutation, then the arc (Z, si) pays for the whole length
si. If si is the last string we have already paid for it, so the arc (si, Z) is free.

To see this reduction in action, the snippets in our running example,
{

catt, gagtat, tagg,

tta, gga
}

results in the graph shown in Figure 3.5 (not all edges are shown).

Question 3.24. What does a Hamiltonian cycle in the graph starting at the source cor-
respond to? What about the total weight of the edges on a cycle?

As intended, in this graph, a cycle through the graph that visits each vertex once corresponds
to a permutation in the brute force method. Furthermore, the sum of the edge weights in that
cycle is equal to the length of the superstring produced by the permutation.

Question 3.25. Is there a cycle in the graph for each permutation?

Note that since the graph is complete, we can construct a cycle for each permutation by visiting
the corresponding vertices in the graph in the specified order. Conversely, we each cycle cor-
responds to a permutation. We have thus established an equivalence between permutations and
the Hamiltonian cycles in the graph.

Since TSP considers all Hamiltonian cycles, it considers all orderings in the brute force
method. Since the TSP finds the min-cost cycle, and assuming the brute force method is correct,
then TSP finds the shortest superstring. Therefore, if we could solve the TSP problem, we would
be able to solve the shortest superstring problem.

April 29, 2015 (DRAFT, PPAP)

52 CHAPTER 3. EXAMPLE: GENOME SEQUENCING

TSP is also NP-hard. What we have accomplished so far is that we have reduced one NP
hard problem to another, but the advantage is that there is a lot known about TSP, so perhaps
this helps.

3.7 Greedy Algorithm

We now consider a third technique, the “greedy” technique, and a corresponding algorithm.

Definition 3.26 (The Greedy Technique). Give a set of elements, on each step remove
at least one element by making a locally optimal decision based on some criteria.

For example, a greedy technique for the TSP could be to always visit the closest unvisited
city. Each step makes a locally optimal decision, and each step removes one element, the next
city visited.

Question 3.27. Does the greedy technique always return the optimal solution?

The greedy technique (or approach) is a heuristic that in some cases returns an optimal
solution, but in many cases it does not. For a given problem there might be several greedy
approaches that depend on the types of steps and what is considered to be locally optimal. The
greedy approach for the SS problem we now consider does not guarantee that we will find the
optimal solution, but it can guarantee to give a good approximation. Furthermore it works very
well in practice. Greedy algorithms are popular because of their simplicity.

Question 3.28. Considering that we want to minimize the length of the result, what
should our “greedy choice” be?

To choose an appropriate greedy approach for the SS problem, note that to minimize the length
of the superstring we would need to maximimize the overlap among the snippets. Thus we can
greedily pick a pair of snippets with the largest overlap and join them by placing one immedi-
ately after the other and removing the overlap. This can then be repeated until there is only one
string left.

To describe the algorithm more precisely, we define a function join(si, sj) that places sj
after si and removes the maximum overlap. For example, join(“tagg”, “gga”) = “tagga”.
The pseudocode for our algorithm is given in Algorithm 3.29.

Given a set of strings S, the greedyApproxSS algorithm checks if the set has only 1
element, and if so returns that element. Otherwise it finds the pair of distinct strings si and sj

April 29, 2015 (DRAFT, PPAP)

3.7. GREEDY ALGORITHM 53

Algorithm 3.29 (Greedy Approximate SS).

1 function greedyApproxSS (S) =
2 if |S| = 1 then
3 S0

4 else
5 let
6 val O = {(overlap(si, sj), si, sj) : si ∈ S, sj ∈ S, si 6= sj}
7 val (o, si, sj) = argmax(x, ,)∈O x

8 val sk = join(si, sj)
9 val S′ = ({sk} ∪ S)\{si, sj}

10 in
11 greedyApproxSS (S′)
12 end

in S that have the maximum overlap. It does this by first calculating the overlap for all pairs
(Line 6) and then picking the one of these that has the maximum overlap (Line 7). Note that O
is a set of triples each corresponding to an overlap and the two strings that overlap. The notation
arg max(x, ,)∈O x is mathematical notation for selecting the element of O that maximizes the
first element of the triple, which is the overlap. After finding the pair (si, sj) with the maximum
overlap, the algorithm then replaces si and sj with sk = join(si, sj) in S.

Question 3.30. Is the algorithm guaranteed to terminate?

The new set S ′ is one smaller than S and that the algorithm recursively repeats this process on
this new set of strings until there is only a single string left. It thus terminates after |S| recursive
calls.

The algorithm is greedy because at every step it takes the pair of strings that when joined will
remove the greatest overlap, a locally optimal decision. Upon termination, the algorithm returns
a single string that contains all strings in the original S. However, the superstring returned is
not necessarily the shortest superstring.

Exercise 3.31. In the code we remove si, sj from the set of strings but do not remove
any strings from S that are contained within sk = join(si, sj). Argue why there cannot
be any such strings.

Exercise 3.32. Prove that algorithm greedyApproxSS indeed returns a string that
is a superstring of all original strings.

April 29, 2015 (DRAFT, PPAP)

54 CHAPTER 3. EXAMPLE: GENOME SEQUENCING

Exercise 3.33. Give an example input S for which greedyApproxSS does not return
the shortest superstring.

Exercise 3.34. Consider the following greedy algorithm for TSP. Start at the source
and always go to the nearest unvisited neighbor. When applied to the graph described
above, is this the same as the algorithm above? If not what would be the corresponding
algorithm for solving the TSP?

Parallelizing the greedy algorithm. Although the greedy algorithm merges pairs of strings
one by one, we note there is still significant parallelism in the algorithm, at least as described. In
particular we can calculate all the overlaps in parallel, and the largest overlap in parallel using
a reduction. We will look at the cost analysis in more detail in the next lecture.

Approximation quality. Although greedyApproxSS does not return the shortest super-
string, it returns an “approximation” of the shortest superstring. In particular, it is known that
it returns a string that is within a factor of 3.5 of the shortest and conjectured that it returns a
string that is within a factor of 2. In practice, it typically performs much better than the bounds
suggest. The algorithm also generalizes to other similar problems.

Of course, given that the SS problem is NP-hard, and greedyApproxSS does only poly-
nomial work (see below), we cannot expect it to give an exact answer on all inputs—that would
imply P = NP, which is unlikely. In literature, algorithms such as greedyApproxSS that
solve an NP-hard problem to within a constant factor of optimal, are called constant-factor
approximation algorithms.

April 29, 2015 (DRAFT, PPAP)

3.7. GREEDY ALGORITHM 55

Remark 3.35. Often when abstracting a problem we can abstract away some key
aspects of the underlying application that we want to solve. Indeed this is the case when
using the Shortest Superstring problem for sequencing genomes. In actual genome
sequencing there are two shortcomings with using the SS problem. The first is that when
reading the base pairs using a DNA sequencer there can be errors. This means the over-
laps on the strings that are supposed to overlap perfectly might not. Don’t fret: this can
be dealt with by generalizing the Shortest Superstring problem to deal with approximate
matching. Describing such a generalization is beyond the scope of this course, but ba-
sically one can give a score to every overlap and then pick the best one for each pair of
fragments. The nice thing is that the same algorithmic techniques we discussed for the
SS problem still work for this generalization, only the “overlap” scores will be different.

The second shortcoming of using the SS problem by itself is that real genomes have
long repeated sections, possibly much longer than the length of the fragments that are
sequenced. The SS problem does not deal well with such repeats. In fact when the
SS problem is applied to the fragments of an initial string with longer repeats than the
fragment sizes, the repeats or parts of them are removed. One method that researchers
have used to deal with this problem is the so-called double-barrel shotgun method. In
this method strands of DNA are cut randomly into lengths that are long enough to span
the repeated sections. After cutting it up one can read just the two ends of such a strand
and also determine its length (approximately). By using the two ends and knowing how
far apart they are it is possible to build a “scaffolding” and recognize repeats. This
method can be used in conjunction with the generalization of the SS discussed in the
previous paragraph. In particular the SS method allowing for errors can be used to
generate strings up to the length of the repeats, and the double barreled method can put
them together.

April 29, 2015 (DRAFT, PPAP)

56 CHAPTER 3. EXAMPLE: GENOME SEQUENCING

.

April 29, 2015 (DRAFT, PPAP)

	Example: Genome Sequencing
	The Shotgun Method
	Defining the Problem
	Brute-Force Algorithm 1
	Understanding the Structure of the Problem
	Brute Force Algorithm 2
	Reduction to the Traveling-Salesperson Problem
	Greedy Algorithm

