
Chapter 1

Algorithm Analysis

The term “algorithm analysis” refers to analyzing algorithms for the purposes of determining
their consumption or resources such as the amount of total work they perform, the energy they
consume, the time to execute, the memory or storage space that they require. When analyzing
algorithms, it is important to be precise enough so that we can compare different algorithms to
assess their suitability for our purposes, and to be abstract enough so that we don’t have to look
at minute details of compilers and computer architectures. To find the right level of abstraction
without being imprecise, we will use a cost model that makes clear the cost of the operations
performed by our algorithms.

In this course, we use two levels of abstraction: asymptotic analysis and language-based cost
models. Asymptotic analysis enables abstracting over small factors contributing to the resource
consumption of an algorithm such as the exact time a particular operation may require. Perhaps,
less conventionally, we also use a language-based cost model, rather than machine-based cost
models, which are used more traditionally. Perhaps the most important reason for this is the
complexities involved in mapping parallel algorithm to actual parallel hardware, which can
complicate the analysis as well as the comparison of parallel algorithms.

In the rest of this chapter, we present a brief overview of asymptotic notation, and then
present a brief overview of cost models and define the cost models used in this course, and
finally discuss recurrence relations and how to solve them.

1.1 Asymptotic Complexity

If we analyze an algorithm precisely, we usually end up with an equation in terms of a variable
characterizing the input. For example, by analyzing the work of the algorithm A for problem P
in terms of its input size, we may obtain the equation: WA(n) = 2n log n+3n+4 log n+5. By
applying the analysis method to another algorithm, algorithm B, we may derive the equation:
WB(n) = 6n+ 7 log2 n+ 8 log n+ 9.

1

2 CHAPTER 1. ALGORITHM ANALYSIS

When given such equations, how should we interpret them? For example, which one of the
two algorithm should we prefer? It is not easy to tell by simply looking at the two equations. But
what we can do is to calculate the two equations for varying values of n and pick the algorithm
that does the least amount of work for the values of n that we are interested in.

In the common case, in computer science, what we care most about is how the cost of an
algorithm behaves for large values of n—the input size. Asymptotic analysis offers a technique
for comparing algorithms at such large input sizes. For example, for the two algorithms that we
considered in our example, via asymptotic analysis, we would derive WA(n) = Θ(n log n) and
WB(n) = Θ(n). Since the first function n log n grows faster that the second n, we would prefer
the second algorithm (for large inputs). The difference between the exact work expressions and
the “asymptotic bounds” written in terms of the “Delta” functions is that the latter ignores so
called constant factors, which are the constants in front of the variables, and lower-order terms,
which are the terms such as 3n and 4 log n that diminish in growth with respect to n log n as n
increases.

Question 1.1. Do you know of an algorithm that compared to other algorithms for
the same problem, performs asymptotically better at large inputs but poorly at smaller
inputs.

Compared to other algorithms solving the same problem, some algorithm may perform bet-
ter on larger inputs than on smaller ones. A classical example is the merge-sort algorithm that
performs Θ(n log n) work but performs much worse on smaller inputs than the asymptotically
less efficient Θ(n2)-work insertion sort. Note that we may not be able to tell that insertion-sort
performs better at small input sizes by just comparing their work asymptotically. To do that,
we will need to compare their actual work equations which include the constant factors and
lower-order terms that asymptotic notation omits.

In addition to enabling us to compare algorithms, asymptotic analysis also allows us to
ignore certain details such as the exact time an operation may require to complete on a particular
architecture. Specifically, when designing our cost model, we take advantage of this to assign
most operations unit costs even if they require more that unit work.

We now consider the three most important asymptotic functions, the “Big-Oh”, “Delta”, and
“Omega.” We also discuss some important conventions that we will follow when doing analysis
and using these notations.

Big-Oh: O(·). The asymptotic expression O(f(n)) is the set of all functions that are asymp-
totically dominated by the function f(n). Intuitively this means that the set consists of the
functions that grow at the same or slower rate than f(n) as n goes to infinity. We write
g(n) ∈ O(f(n)) to refer to a function g(n) that is in the set O(f(n)).

We usually use the abusive notation g(n) = O(f(n)) as well. This notation makes it easier
to reason about asymyptotics. For example, in an expression such as 4W (n/2) + O(n), the
O(n) refers to some function g(n) ∈ O(n) that we care not to specify.

January 20, 2015 (DRAFT, PPAP)

1.2. 3

Definition 1.2. For a function g(n), we say that g(n) ∈ O(f(n)) if there exist positive
constants n0 and c such that for all n ≥ n0, we have g(n) ≤ c · f(n).

If g(n) is a finite function (g(n) in finite for all n), then it follows that there exist constants
k1 and k2 such that for all n ≥ 1,

g(n) ≤ k1 · f(n) + k2,

where, for example, we can take k1 = c and k2 =
∑n0

i=1 |g(i)|.

Remark 1.3. Make sure to become very comfortable with asymptotic analysis. Also its
different versions such as the Θ(·) and Ω(·).

Exercise 1.4. Can you illustrate graphically when g(n) ∈ O(f(n))? Show different
examples, to hone your understanding.

Delta notation: ∆(·).

Omega notation Ω(·).

1.2

There are a several parts of such analysis. Firstly we need to abstract the cost from details of
the compiler or machine. Secondly we have to decide on a concrete model that allows us to
formally define the cost of an algorithm. Since we are interested in parallel algorithms, the
model needs to consider parallelism. Thirdly we need to understand how to analyze costs in
this model. These are the topics of this chapter.

1.3 Abstracting Costs

When we analyze the cost of an algorithm formally, we need to be reasonably precise about the
model we are performing the analysis in.

Question 1.5. How precise should this model be? For example, would it help to know
the exact running time for each instruction?

January 20, 2015 (DRAFT, PPAP)

4 CHAPTER 1. ALGORITHM ANALYSIS

The model can be arbitrarily precise but it is often helpful to abstract away from some
details such as the exact running time of each (kind of) instruction. For example, the model can
posit that each instruction takes a single step (unit of time) whether it is an addition, a division,
or a memory access operation. Some more advanced models, which we will not consider in
this class, separate between different classes of instructions, for example, a model may require
analyzing separately calculation (e.g., addition or a multiplication) and communication (e.g.,
memory read).

Question 1.6. Why would abstracting away from exact running times help?

There are two ways in which such abstraction helps: simplicity and portability. Abstraction
simplifies analysis and makes the analysis applicable to many different actual hardware and
machines, rather that just one or a few, that are consistent with the model. A model too precise
can hurt portability because machines are all different.

Example 1.7. Consider the following function:

1 fun add (x:int,y:int) = x+y

This ML function, when invoked with two integers performs 1 unit of work in a model
where all operations take unit time. Note that the cost is independent of the input.

Question 1.8. What happens when cost depends on the input but we don’t know the
input?

Cost can depend on the input. Usually, however, all we need is the input size, which we can
use for our analysis. Input size is usually written n, m, etc..

Example 1.9. Consider the following function:

1 datatype tree = Leaf of int | Node of tree × tree
2 fun addTree(t : tree) =
3 case t of
4 Leaf x ⇒ x
5 | Node(l,r) ⇒ addTree(l) + addTree(r)

This ML function, when invoked with a tree of n internal nodes and m leaves, performs
4n+m work in a model where case statement, function call, and the add operations all
take unit time.
If we also count returning from a function call as unit time, the work is 5n+ 2m.
Since in a (full) binary tree m = n + 1, the work can be written just in terms of n as
7n+ 1.

January 20, 2015 (DRAFT, PPAP)

1.3. ABSTRACTING COSTS 5

Question 1.10. How do we know whether we need to count the “return” or not?

At the level of abstraction that we write our algorithms in this course, certain “hidden”
instructions such as the return instruction can be executed. The existence of such instructions
can be difficult to predict, without using a lower level of abstraction.

Fortunately, for our purposes, asymptotic analysis will be sufficient. Instead of performing
an exact analysis, we will instead analyze asymptotic costs, e.g., using big-O notation.

Example 1.11. Consider the following function

1 fun add (x:int,y:int) = x+y

This ML function performs Θ(1) work.

Remark 1.12. We assume you have seen big-O, big-Theta (Θ), and big-Omega (Ω) in
a previous class. If not there is a quick review in the next section.

Example 1.13. Consider again the function in Example ??. when invoked with a tree
of n internal nodes and m leaves, performs Θ(n + m) work in a model where case
statement, function call, and the add operations all take unit time. Since in a binary tree
m = n+ 1, the work is Θ(n).

Asymptotic analysis thus adds another level of abstraction, making our analysis further
removed from the actual machine.

The advantages continue to hold. Asymptotic analysis further enables comparing algorithms
in terms of how they scale to large inputs.

Example 1.14. Some sorting algorithms have Θ(n log n) work and others Θ(n2).
Clearly the Θ(n log n) algorithm scales better. The Θ(n2) algorithm, however, can be
more efficient on small inputs.

In this class we are concerned with how algorithms scale, and therefore asymptotic analysis
is indeed what we want. Because we are using asymptotic analysis the exact constants in the
model do not matter, but what matters is that the asymptotic costs are well defined.

January 20, 2015 (DRAFT, PPAP)

6 CHAPTER 1. ALGORITHM ANALYSIS

1.4 Defining a Cost Model

Although we have decided to use asymptotic analysis so we can ignore details about the imple-
mentation, we still need to be reasonably precise about the definition of the cost model. This
is because differences in the model can make asymptotic differences in performance. There are
two standard ways to define cost models: machine based and language based. In a machine-
based model, costs is defined by counting the number of instructions taken by a particular
machine. In a language-based model, cost is defined by composing costs across various pro-
gramming language constructs. Both types can be applied to analyzing either sequential or
parallel algorithms.

Question 1.15. What are the advantages of using a machine based and a language-
based model?

When using a machine model, we have to reason about how a program (the algorithm) com-
piles and runs on that machine. For sequential programs this can be straightforward when using
low-level languages such as C since there is an almost one-to-one mapping of statements in the
language to machine instructions. For higher-level languages it becomes somewhat trickier—
there might be uncertainties, for example, about the cost of automatic memory management, or
the cost of dispatching in an object-oriented language. For parallel programs it becomes even
trickier since it can require reasoning about how tasks are scheduled on the processors.

When analyzing algorithms in a language-based model we don’t need to care about how the
language compiles or runs on the machine. Costs are defined directly in the language. On the
other hand we probably do want to have a sense that the costs in the model have some relevance
when we run the code on a real machine. We get back to this issue in Section ??. We note that
in the same way that a machine model does not need to be a specific machine such as an Intel
Nehalem or AMD Phenom, the language doesn’t need to be a specific language such as C++ or
Java. Instead it can be an abstract language such as the lambda calculus. The lamba calculus
is effectively what we use in this book, with some added syntactic sugar, but you don’t need to
know much about the lamba calculus to follow the model.

Traditionally with sequential algorithms machine models have been preferred since the map-
ping from language constructs to machine cost (time or number of instructions) have been
mostly obvious. In this course, however, we will use a language-based cost model since the
mapping is not so obvious, and because it allows us to use abstract costs, work and span, which
have no direct meaning on a physical machine. We first review the traditional sequential ma-
chine model.

January 20, 2015 (DRAFT, PPAP)

1.4. DEFINING A COST MODEL 7

1.4.1 The RAM Model for Sequential Computation

Traditionally, algorithms have been analyzed in the Random Access Machine (RAM)1 model.
This model assumes a single processor accessing unbounded memory indexed by the non-
negative integers. The processor interprets sequences of machine instructions (code) that are
stored in the memory. Instructions include basic arithmetic and logical operations (e.g. +, -, *,
and, or, not), reads from and writes to arbitrary memory locations, and conditional and uncon-
ditional jumps to other locations in the code. The cost of a computation is measured in terms of
the number of instructions executed by the machine, and is referred to as time.

This model is quite adequate for analyzing the asymptotic runtime of sequential algorithms;
most work on sequential algorithms to date has used this model. It is therefore important to
understand the model, or at least know what it is. One reason for the RAM’s success is that
it is relatively easy to reason about the cost of algorithms because algorithmic pseudo code
and sequential languages such as C and C++ can easily be mapped to the model. The model,
however, should only be used for deriving asymptotic bounds (i.e., using big-O, big-Theta and
big-Omega) and not for trying to predict exact runtimes. One reason for this is that on a real
machine not all instructions take the same time, and furthermore not all machines have the same
instructions.

We note that one problem with the RAM model is that it assumes that accessing all memory
locations has the same cost. On real machines this is not the case. In fact, there can be a factor
of over 100 between the time for accessing a word of memory from the first level cache and
accessing it from main memory. Various extensions to the RAM model have been developed to
account for this cost. For example one variant is to assume that the cost for accessing the ith

memory location is f(i) for some function f , e.g. f(i) = log(i). Fortunately, however, most of
the algorithms that turn out to be good in these more detailed models are also good in the RAM.
Therefore analyzing algorithms in the simpler RAM model is often a reasonable approximation
to analyzing in the more refined models. Hence the RAM has served quite well despite not fully
accounting for the variance in memory costs. The model we use in this course also does not
account for the variance in memory costs, but as with the RAM the costs can be refined.

1.4.2 The Parallel RAM Model

For our purposes, the more serious problem with the RAM model is that it is sequential. One
way to extend the RAM to allow parallelism is simply to use multiple processors which share
the same memory. This is referred to as the Parallel Random Access Machine (PRAM). In the
model all of p processors run the same instruction on each step, although typically on different
data. For example if we had an array of length p, each processor could add one to its own
element allowing us to increment all elements of the array in constant time.

We will not be using the PRAM model since it is awkward to work with, both because it
is overly synchronous and because it requires the user to map computation to processors. For

1Not to be confused with Random Access Memory (RAM)

January 20, 2015 (DRAFT, PPAP)

8 CHAPTER 1. ALGORITHM ANALYSIS

simple parallel loops over n elements we could imagine dividing up the elements evenly among
the processors—about n/p each, although there is some annoying rounding required since n is
typically not a multiple of p. If the cost of each iteration of the loop is different then we would
further have to add some load balancing. In particular simply giving n/p to each processor
might be the wrong choice—one processor could get stuck with all the expensive iterations.
For computations with nested parallelism, such as divide-and-conquer algorithms the mapping
is much more complicated, especially given the highly synchronous nature of the model.

Even though we don’t use the PRAM model, most of the ideas presented in this course also
work with the PRAM, and many of them were originally developed in the context of the PRAM.

1.4.3 The Work-Span Model

Instead of using a machine model, this book will use a model that is more directly tied to pro-
gramming constructs. We believe that the model makes it much easier to separate the high-level
concepts of parallelism from low-level machine-specific details. It is therefore more amenable
to get you to “think parallel”, one goal of this course. As it turns out, there is a way to map the
costs we derive onto costs for specific machines, which is discussed in Section ??.

Work and Span. As mentioned in the introduction, in this book we will measure complexity
in terms of two costs: work and span. Roughly speaking the work corresponds to the total
number of operations we perform, and span to the longest chain of dependencies. We define
work and span based on simple compositional rules over expressions in the language. For an
expression e let W (e) indicate the work needed to evaluate that expression and S(e) indicate
the span.

Example 1.16.

W (7 + 3) = Work for adding 7 and 3
S(fib(11)) = Span for calculating the 11th Fibonacci number
W (mySort(S)) = Work for mySort applied to the sequence S

Note that in the third example the sequence S is not defined within the expression. Therefore
we cannot say in general what the work is as a fixed value. However, we might be able to use
asymptotic analysis to write a cost in terms of the length of s, and in particular if mySort is a
good sorting algorithm we would have:

W (mySort(S)) = O(|S| log |S|) .

Often instead of writing |S| to indicate the size of the input, we use n or m as shorthand. Also
if the cost is for a particular algorithm we use a subscript to indicate the algorithm. This leads
to the following notation

WmySort(n) = O(n log n) .

January 20, 2015 (DRAFT, PPAP)

1.4. DEFINING A COST MODEL 9

where n is the size of the input of mysort. When obvious from the context (e.g. when in a
section on analyzing mySort) we sometimes drop the subscript, giving W (n) = O(n log n).

Now we care about composing costs across expressions. For example we would like to
determine W (e1 + e2) given W (e1) and W (e2)? Here we assume e1 and e2 are arbitrary ex-
pressions. We can do such composition of costs with some simple rules that correspond to each
of the different types of expression we have in our language. As discussed in the Introduction,
these rules roughtly say that when composing sequentially we add the work and add the span,
but that when composing in parallel, we add the work and take the maximum of the span.

Question 1.17. When are expressions composed in parallel and when sequentially?

Since in this book we are assuming purely functional programs, it is always safe to run
things in parallel if there is no explicit sequencing.

Example 1.18. In the expression e1 + e2 where e1 and e2 are themselves other expres-
sions (e.g. function calls) we could run the two expressions in parallel giving the rule

S(e1 + e2) = 1 + max(S(e1), S(e2)).

This rule says the two subexpressions e1 and e2 run in parallel, and therefore the span
in combination is the maximum of their individual spans. The addition operation, how-
ever, has to wait for both subexpressions to be done. It therefore has to be performed
sequentially after the two parallel subexpressions and hence the plus 1 in the expression
1 + max(S(e1), S(e2)).

In this book, however, to make it more clear whether expressions are evaluated sequentially
or in parallel we will assume that expressions are composed in parallel only when using explicit
parallel forms. In particular we will use the notation (e1 || e2) to mean that the two expressions
run in parallel. The result is a pair of values containing the two results. In addition to the ||
construct we assume the set-like notation we use in our pseudocode {f(x) : x ∈ A} also runs
in parallel, i.e., all calls to f(x) run in parallel.

Given these conventions, the rules for composing work and span are outlined in Figure ??.
For the let expression we need to first evaluate e1 and assign it to x before we can evaluate
e2. Hence the fact that the span is composed sequentially, i.e., by adding the spans. Note
that the rules are the same for work and span except for the two parallel constructs: || and
{f(x) : x ∈ A}.

January 20, 2015 (DRAFT, PPAP)

10 CHAPTER 1. ALGORITHM ANALYSIS

W (c) = 1

W (e1 op e2) = W ((e1, e2)) = W (e1 || e2) = 1 +W (e1) +W (e2)

W (let val x = e1 in e2 end) = 1 +W (e1) +W (e2[Eval(e1)/x]))

W (if e1 then e2 else e3) = 1 +W (e1) +

{
W (e2) Eval(e1) = True
W (e3) otherwise

W ({f(x) : x ∈ A}) = 1 +
∑
x∈A

W (f(x))

S(c) = 1

S(e1 op e2) = S((e1, e2)) = 1 + S(e1) + S(e2)

S((e1 || e2)) = 1 + max(S(e1), S(e2))

S(let val x = e1 in e2 end) = 1 + S(e1) + S(e2[Eval(e1)/x]))

S(if e1 then e2 else e3) = 1 + S(e1) +

{
S(e2) Eval(e1) = True
S(e3) otherwise

S({f(x) : x ∈ A}) = 1 + max
x∈A

S(f(x))

Figure 1.1: Composing work and span across expressions. In the first rule c is any constant
value (e.g. 3). In the second rule op is any primitive operator such as + or ×. The notation
Eval(e) evaluates the expression e and returns the result, and the notation e[v/x] indicates that
all free (unbound) occurrences of the variable x in the expression e are replaced with the value
v. These rules are representative of all rules of the language.

Example 1.19. The expression (fib(6) || fib(7)) runs the two calls to fib in parallel
and returns the pair (8, 13). It does work

1 +W (fib(6)) +W (fib(7))

and span
1 + max(S(fib(6)), S(fib(7))) .

If we know that the span of fib grows with the input size, then the span can be simpli-
fied to 1 + S(fib(7)).

Example 1.20. Let expressions compose sequentially.

W (let a = f(x) in g(a) end) = 1 +W (f(x)) +W (g(a))

S(let a = f(x) in g(a) end) = 1 + S(f(x)) + S(g(a))

January 20, 2015 (DRAFT, PPAP)

1.4. DEFINING A COST MODEL 11

Remark 1.21. As there is no || construct in the ML, in your assignments you will need
to specify in comments when two calls run in parallel. We will also supply an ML
function par (f1,f2) with type (unit -> α) × (unit -> β) -> α × β.
This function executes the two functions that are passed in as arguments in parallel and
returns their results as a pair. For example:
par (fn => fib(6), fn => fib(7))
returns the pair (8, 13). We need to wrap the expressions in functions in ML so that we
can make the actual implementation run them in parallel. If they were not wrapped both
arguments would be evaluated sequentially before they are passed to the function par.
Also in the ML code you do not have the set notation {f(x) : x ∈ A}, but as mentioned
before, it is basically equivalent to a map. Therefore, for ML code you can use the rules:

W (map f 〈 s0, . . . , sn−1 〉) = 1 +
n−1∑
i=0

W (f(si))

S(map f 〈 s0, . . . , sn−1 〉) = 1 +
n−1
max
i=0

S(f(si))

Parallelism: An additional notion of cost that is important in comparing algorithms is the par-
allelism of an algorithm. Parallelism, sometimes called average parallelism, is simply defined
as the work over the span:

P =
W

S

Parallelism informs us approximately how many processors we can use efficiently.

Example 1.22. For a mergesort with work θ(n log n) and span θ(log2 n) the parallelism
would be θ(n/ log n).
Suppose n = 10, 000 and if W (n) = θ(n3) ≈ 1012 and S(n) = θ(n log n) ≈ 105 then
P(n) ≈ 107, which is a lot of parallelism. But, ifW (n) = θ(n2) ≈ 108 then P(n) ≈ 103,
which is much less parallelism. The decrease in parallelism is not because of the span
was large, but because the work was reduced.

Question 1.23. What are ways in which we can increase parallelism?

We can increase parallelism by decreasing span and/or increasing work. Increasing work,
however, is not desirable because it leads to an inefficient algorithm.

Definition 1.24 (Work efficiency). We say that a parallel algorithm is work efficient if
it perform asymptotically the same work as the best known sequential algorithm for that
problem.

January 20, 2015 (DRAFT, PPAP)

12 CHAPTER 1. ALGORITHM ANALYSIS

Example 1.25. A (comparison-based) parallel sorting algorithm with Θ(n log n) work
is work efficient; one with Θ(n2) is not, because we can sort sequentially with Θ(n log n)
work.

Designing parallel algorithms. In parallel-algorithm design, we aim to keep parallelism as
high as possible but without increasing work. In general the goals in designing efficient algo-
rithms are

1. first priority: to keep work as low as possible, and

2. second priority: keep parallelism as high as possible (and hence the span as low as possi-
ble).

In this course we will mostly cover work-efficient algorithms where the work is the same or
close to the same as the best sequential time. Indeed this will be our goal throughout the course.
Now among the algorithm that have the same work as the best sequential time we will try to
achieve the greatest parallelism.

1.5 Scheduling

An important advantage of the work-depth model is that is allows us to design parallel algo-
rithms without having to worry about the details of how they are executed on an actual parallel
machine. In other words, we never have to worry about mapping of the parallel computation to
processors, i.e., scheduling.

Question 1.26. Is scheduling a challenging task? Why?

Scheduling can be challenging because a parallel algorithm generate tasks on the fly as it
runs, and it can generate a massive number of them, typically much more than the number of
processors available when running.

Example 1.27. A parallel algorithm with Θ(n/ log n) parallelism can easily generate
millions parallel subcomptutations or task at the same time, even when running on a
multicore computer with for example 10 cores.

January 20, 2015 (DRAFT, PPAP)

1.5. SCHEDULING 13

Scheduler. Mapping parallel tasks to available processor so that each processor remains busy
as much as possible is the task of a scheduler. The scheduler works by taking all parallel tasks,
which are generated dynamically as the algorithm evaluates, and assigning them to processors.
If only one processor is available, for example, then all tasks will run on that one processor. If
two processor are available, the task will be divided between the two.

Question 1.28. Can you think of a scheduling algorithm?

Greedy scheduling. We say that a scheduler is greedy if whenever there is a processor avail-
able and a task ready to execute, then it assigns the task to the processor and start running it
immediately. Greedy schedulers have a very nice property that is summarized by the following:

Definition 1.29. The greedy scheduling principle says that if a computation is run on p
processors using a greedy scheduler, then the total time (clock cycles) for running the
computation is bounded by

Tp <
W

p
+ S(1.1)

where W is the work of the computation, and S is the span of the computation (both
measured in units of clock cycles).

This is actually a very powerful statement. The time to execute the computation cannot be
any better than W

p
clock cycles since we have a total of W clock cycles of work to do and the

best we can possibly do is divide it evenly among the processors. Also note that the time to
execute the computation cannot be any better than S clock cycles since S represents the longest
chain of sequential dependencies. Therefore the very best we could do is:

Tp ≥ max

(
W

p
, S

)
We therefore see that a greedy scheduler does reasonably close to the best possible. In

particular W
p

+S is never more than twice max(W
p
, S) and when W

p
� S the difference between

the two is very small. Indeed we can rewrite equation ?? above in terms of the parallelism
P = W/S as follows:

Tp <
W

p
+ S

=
W

p
+
W

P

=
W

p

(
1 +

p

P

)
January 20, 2015 (DRAFT, PPAP)

14 CHAPTER 1. ALGORITHM ANALYSIS

Therefore as long as P � p (the parallelism is much greater than the number of processors)
then we get near perfect speedup. (Speedup is W/Tp and perfect speedup would be p).

Remark 1.30. No real schedulers are fully greedy. This is because there is overhead in
scheduling the job. Therefore there will surely be some delay from when a job becomes
ready until when it starts up. In practice, therefore, the efficiency of a scheduler is quite
important to achieving good efficiency. Also the bounds we give do not account for
memory affects. By moving a job we might have to move data along with it. Because of
these affects the greedy scheduling principle should only be viewed as a rough estimate
in much the same way that the RAM model or any other computational model should be
just viewed as an estimate of real time.

1.6 Analysis of Shortest-Superstring Algorithms

As examples of how to use our cost model we will analyze a couple of the algorithms we de-
scribed for the shortest superstring problem: the brute force algorithm and the greedy algorithm.

1.6.1 The Brute Force Shortest Superstring Algorithm

Recall that the idea of the brute force algorithm for the SS problem is to try all permutations of
the input strings and for each permutation to determine the maximal overlap between adjacent
strings and remove them. We then pick whichever remaining string is shortest, if there is a
tie we pick any of the shortest. We can calculate the overlap between all pairs of strings in a
preprocessing phase. Let n be the size of the input S and m be the total number of characters
across all strings in S, i.e.,

m =
∑
s∈S

|s|.

Note that n ≤ m. The preprocessing step can be done in O(m2) work and O(log n) span (see
analysis below). This is a low order term compared to the other work, as we will see, so we can
ignore it.

Now to calculate the length of a given permutation of the strings with overlaps removed we
can look at adjacent pairs and look up their overlap in the precomputed table. Since there are
n strings and each lookup takes constant work, this requires O(n) work. Since all lookups can
be done in parallel, it will require only O(1) span. Finally we have to sum up the overlaps and
subtract it from m. The summing can be done with a reduce in O(n) work and O(log n) span.
Therefore the total cost is O(n) work and O(log n) span.

As we discussed in the last lecture the total number of permutations is n!, each of which we
have to check for the length. Therefore the total work is O(nn!) = O((n+ 1)!). What about the
span? Well we can run all the tests in parallel, but we first have to generate the permutations.

January 20, 2015 (DRAFT, PPAP)

1.6. ANALYSIS OF SHORTEST-SUPERSTRING ALGORITHMS 15

One simple way is to start by picking in parallel each string as the first string, and then for each
of these picking in parallel another string as the second, and so forth. The pseudo code looks
something like this:

1 function permutations(S) =
2 if |S| = 1 then {S}
3 else
4 flatten({append(〈 s 〉 , p)
5 : s ∈ S, p ∈ permutations(S \ s)})

What is the span of this code?

1.6.2 The Greedy Shortest Superstring Algorithm

We’ll consider a straightforward implementation, although the analysis is a little tricky since the
strings can vary in length. First we note that calculating overlap(s1, s2) and join(s1, s2)
can be done in O(|s1||s2|) work and O(log(|s1| + |s2|)) span. This is simply by trying all
overlap positions between the two strings, seeing which ones match, and picking the largest.
The logarithmic span is needed for picking the largest matching overlap using a reduce.

LetWov and Sov be the work and span for calculating all pairs of overlaps (the line {(overlap
(si, sj), si, sj) : si ∈ S, sj ∈ S, si 6= sj}), and for our set of input snipets S recall that
m =

∑
x∈S |x|.

January 20, 2015 (DRAFT, PPAP)

16 CHAPTER 1. ALGORITHM ANALYSIS

We have

Wov ≤
n∑

i=1

n∑
j=1

W (overlap(si, sj)))

=
n∑

i=1

n∑
j=1

O(|si||sj|)

≤
n∑

i=1

n∑
j=1

(k1 + k2|si||sj|)

= k1n
2 + k2

n∑
i=1

n∑
j=1

(|si||sj|)

= k1n
2 + k2

n∑
i=1

(
|si|

n∑
j=1

|sj|

)

= k1n
2 + k2

n∑
i=1

(|si|m)

= k1n
2 + k2m

n∑
i=1

|si|

= k1n
2 + k2m

2

∈ O(m2) since m ≥ n.

and since all pairs can be done in parallel,

Sov ≤
n

max
i=1

n
max
j=1

S(overlap(si, sj)))

∈ O(logm)

The arg max for finding the maximum overlap can be computed in O(m2) work and O(logm)
span using a simple reduce. The other steps have less work and span. Therefore, not including
the recursive call each call to greedyApproxSS costs O(m2) work and O(logm) span.

Finally, we observe that each call to greedyApproxSS creates S ′ with one fewer element
than S, so there are at most n calls to greedyApproxSS. These calls are inherently sequential
because one call must complete before the next call can take place. Hence, the total cost for the
algorithm is O(nm2) work and O(n logm) span, which is highly parallel.

Exercise 1.31. Come up with a more efficient way of implementing the greedy method.

January 20, 2015 (DRAFT, PPAP)

1.6. ANALYSIS OF SHORTEST-SUPERSTRING ALGORITHMS 17

Figure 1.2: Abstraction is a powerful technique in computer science. One reason why is that it
enables us to use our intelligence more effectively allowing us not to worry about all the details
or the reality. Paul Cezanne noticed that all reality, as we call it, is constructed by our intellect.
Thus he thought, I can paint in different ways, in ways that don’t necessarily mimic vision, and
the viewer can still create a reality. This allowed him to construct more interesting realities. He
used abstract, geometric forms to architect reality. Can you see them in his self-portrait? Do
you think that his self-portrait creates a reality that is much more three dimensional, with more
volume, more tactile presence than a 2D painting that would mimic vision? Cubists such as
Picasso and Braque took his ideas on abstraction to the next level.

January 20, 2015 (DRAFT, PPAP)

