
Chapter 6

Algorithm-Design Technique: Contraction

Contraction, an inductive technique for designing parallel algorithms, is probably one of the
most important algorithm-design techniques. Like divide-and-conquer algorithms, contraction
algorithms involve solving a smaller instance of the same problem, but unlike in divide-and-
conquer, there is only one subproblem to solve at a time.

A contraction algorithm for problem P has the following structure.

Base Case: If the problem instance is sufficiently small, then compute and return the answer,
possibly using another algorithm.

Inductive Step: If the problem instance is sufficiently large, then apply the following three
steps (possibly multiple times).

1. Contract: “contract”, i.e., map the instance of the problem P to a smaller instance
of P .

2. Solve: solve the smaller instance recursively.

3. Expand: use the solution to solve the original instance.

Contraction algorithms have several nice properties. First, their inductive structure enables
establishing correctness and efficiency properties in a relatively straightforward fashion using
principles of induction. For example, to prove a contraction algorithm correct, we first prove
correctness for the base case, and then prove the general (inductive) case by using strong induc-
tion, which allows us to assume that the recursive call is correct. Similarly, the work and span
of a contraction algorithm can be expressed as a recursive (inductive) relation, which essentially
reflects the structure of the algorithm itself. We then establish the bounds for work and span
by using known, well-understood techniques for solving recursive relations as briefly discussed
in Chapter 4. Second, contraction algorithms can be efficient, especially if they can reduce the
problem size geometrically (by a constant factor greater than 1) at each contraction step and
if the contraction. Similarly, if the contraction and expansion steps have low spans, and if the
problem size can be decreased by geometrically, then the algorithm will likely have a low span,
making it a good parallel algorithm.

115

116 CHAPTER 6. ALGORITHM-DESIGN TECHNIQUE: CONTRACTION

In this chapter, we will consider several applications of the contraction technique and ana-
lyze the resulting algorithms.

6.1 Example 1: Implementing Reduce with Contraction

As our first example, we describe how to perform reduction on a sequence by using contraction.
Recall that the type signature for reduce is as fallows.

reduce (f: α * α → α) (I: α) (S: α sequence): α

where f is an associative function, S is the sequence, and I is the identity element of f . Even
though we have defined reduce broadly for both associative and non-associative functions,
throughout this section, we only consider the case with associative functions.

The crux in designing a contraction algorithm is to design an algorithm for reducing an
instance of the problem to a significantly smaller instance of the same problem by performing
a parallel contraction step.

Question 6.1. How can we reduce an instance of the “reduce” problem to a smaller
instance of the same problem?

As it turns out, there are many ways to perform such a contraction. Recall, for example, that
we can perform a reduction by using iteration (iterate). In fact, iteration technique can be
viewed as a way of reducing the problem to a smaller instance of the problem, which is smaller
than the original problem only by one element. To see how we might achieve a more significant
reduction in the problem size, consider applying the function to consecutive pairs of the input.
For example if we wish to compute the sum of the input sequence

〈 2, 1, 3, 2, 2, 5, 4, 1 〉

by using the addition function, we would contract the sequence to

〈 3, 5, 7, 5 〉 .

By using this contraction step, we have reduced the input size by (nearly) a factor of two.

Question 6.2. Can we perform this contraction step in parallel?

Note also that the contraction step can be performed in parallel, because each pair can be con-
sidered independently in parallel.

Having reduced the size of the problem with the contraction step, we next solve the resulting
problem by invoking the same algorithm and apply expansion to construct the final result.

April 29, 2015 (DRAFT, PPAP)

6.1. EXAMPLE 1: IMPLEMENTING REDUCE WITH CONTRACTION 117

Question 6.3. What computations should the expansion step perform?

It is not difficult to see that by solving the smaller problem, we have actually solved the original
problem, because the sum of the sequence remains the same as that of the original. Thus, the
expansion step requires no additional computation.

We can thus express our algorithm as follows; for simplicity, we assume that the input size
is a power of two.

Algorithm 6.4 (Reduce with contract).

(* Assume for simplicity that |A| is a power of 2 *)
fun reduce_with_contract f A =

B = 〈 f(A[i], A[i+ 1]) : 0 ≤ i < b|A|/2 〉 (* Contraction *)
reduce_with_contract f B
(* Expansion not needed. *)

One nice thing about contraction algorithms is that ther work and span can be written using
a recursive relation.

Question 6.5. What is the work of this algorithm?

Assuming that the function being reduced over performs constant work, parallel tabulate in the
contraction step requires linear work, we can thus write the work of this algorithm as follows.

W (n) = W (n/2) + n.

It is not difficult to solve this recursive formula to prove that the algorithm therefore performs
O(n) work.

Question 6.6. How about the span?

Assuming that the function being reduced over performs constant span, parallel tabulate in the
contraction step requires constant span, we can thus write the work of this algorithm as follows.

S(n) = S(n/2) + 1.

The algorithm therefore performs O(log n) span.

April 29, 2015 (DRAFT, PPAP)

118 CHAPTER 6. ALGORITHM-DESIGN TECHNIQUE: CONTRACTION

6.2 Example 2: Implementing Scan with Contraction

As an even more interesting example, we describe how to implement the scan sequence prim-
itive efficiently by using contraction. Recall that the scan function has the type signature

scan (f: α*α → α) (I: α) (A: α sequence) : (α sequence*α)

where f is an associative function, A is the sequence, and I is the identity element of f . When
evaluated with a function and a sequence, scan can be viewed as applying a reduction to every
prefix of the sequence and returning the results of such reductions as a sequence.

Suppose we are to run, scan ‘+‘, i.e., “plus scan” on the sequence 〈 2, 1, 3, 2, 2, 5, 4, 1 〉.
What we should get back is

(〈 0, 2, 3, 6, 8, 10, 15, 19 〉 , 20) .

We will use this as a running example.

Based on its specification, a direct algorithm for scan is to apply a reduce to all prefixes of
the input sequence.

Question 6.7. What it the work of such an algorithm?

Unfortunately, this easily requires quadradic work in the size of the input sequence.

Question 6.8. Do you see what makes this algorithm inefficient? Is there a better algo-
rithm?

We can see that this algorithm is inefficient by noting that it performs lots of redundant com-
putations. In fact, two consecutive prefixes overlap significantly but the algorithm does not
take advantage of such overlaps at all, computing the result for each overlap essentially inde-
pendently. By taking advantage of the fact that any two consecutive prefixes differ by just one
element, it is not difficult to give a linear work algorithm (modulo the cost of the application of
the argument function) by using iteration. Such an algorithm may be expressed as follows∫ f I

x∈A
x = h

(∏ g (〈 〉,I)

x∈A
x

)
,

where g((B, v), x) = ((append 〈 v 〉B), f(v, x))
and
h(B, v) = (reverse B), v) (reverse reverses a sequence).

Question 6.9. What is wrong with this algorithm?

April 29, 2015 (DRAFT, PPAP)

6.2. EXAMPLE 2: IMPLEMENTING SCAN WITH CONTRACTION 119

This algorithm, while correct, is almost entirely sequential, leaving no room for parallelism.

Question 6.10. Considering that it has to compute some value for each prefix, can we
even perform a scan in parallel?

Beyond the wonders of what can be done with scan, an interesting fact about scan is that it
can be accomplished efficiently in parallel, although on the surface, the computation it carries
out appears to be sequential in nature. At first glance, we might be inclined to believe that
any efficient algorithms will have to keep a cumulative “sum,” computing each output value by
relying on the “sum” of the all values before it. It is this apparent dependency that makes scan
so powerful. Indeed, we often use scan when it seems we need a function that depends on the
results of other elements in the sequence.

To implement scan efficiently using contraction, we need a way to reduce the problem to
a significiantly smaller instance of the same problem by applying a contraction step.

Question 6.11. Any ideas about how we might be able to do this?

As a starting point, Let’s apply the same idea as we used for reduction in Algorithm 6.4 see
and how far we might get with that. Applying the contraction step from the reduce algorithm
described above, we would reduce the input sequence

〈 2, 1, 3, 2, 2, 5, 4, 1 〉

to the sequence
〈 3, 5, 7, 5 〉 ,

which if recursively used as input would give us the result

(〈 0, 3, 8, 15 〉 , 20).

Notice that in this sequence, the elements in the first, third, etc., positions are actually consistent
with the result expected:

(〈 0, 2, 3, 6, 8, 10, 15, 19 〉 , 20).

The reason for why half of the elements is correct is because the contraction step which
pairs up the elements and reduces them, does not affect, by associativity of the function being
used, the result at the position that do not fall in between a pair. Thus, what we thus need is an
expansion step that can fill those missing items. It is actually quite simple: all we have to do is
to compute the missing elements by applying the function element-wise to the elements of the
input at odd positions in the input sequence and the results of the recursive call to scan.

To illustrate, the diagram below shows how to produce the final output sequence from the
original sequence and the result of the recursive call:

April 29, 2015 (DRAFT, PPAP)

120 CHAPTER 6. ALGORITHM-DESIGN TECHNIQUE: CONTRACTION

Input = h2, 1, 3, 2, 2, 5, 4, 1i

Partial Output = (h0, 3, 8, 15i, 20)

Desired Output = (h0, 2, 3, 6, 8, 10, 15, 19i, 20)

+ + + +

This leads to the following code. The algorithm we present works for when n is a power of
two.

Algorithm 6.12 (Scan Using Contraction, for powers of 2).

1 (* Assume that the length of the sequence is a power of two. *)
2 function scanPow2 f i A =
3 case |A| of
4 0 ⇒ (〈 〉 , i)
5 | 1 ⇒ (〈 i 〉 , A[0])
6 | n ⇒ let
7 val A′ = 〈 f(A[2i], A[2i+ 1]) : 0 ≤ i < n/2 〉
8 val (r, t) = scanPow2 f i A′

9 in

10 (〈 pi : 0 ≤ i < n 〉 , t), where pi =

{
r[i/2] even(i)

f(r[i/2], A[i− 1]) otherwise.

11 end

Question 6.13. What is the work and span of the contraction algorithm for scan?

Let’s assume for simplicity that the function being applied has constant work and constant span.
We can write out the work and spane for the algorithm as a recursive relation as follows.

W (n) = W (n/2) + n, and S(n) = S(n/2) + 1,

because 1) the contraction step which tabulates the smaller instance of the problem performs
linear work in constant span, and 2) the expansion step that constructs the output by tabulating
based on the result of the recursive call also performs linear work in constant span.

These recursive relations should look familiar. Indeed, they are the same as those that we
ended up with when we analyzed the work and span of our contraction-based implementation
of reduce. They yield O(n) work and O(log n) span.

April 29, 2015 (DRAFT, PPAP)

	Algorithm-Design Technique: Contraction
	Example 1: Implementing Reduce with Contraction
	Example 2: Implementing Scan with Contraction

