
Chapter 3

Algorithm Analysis

The term “algorithm analysis” refers to math-
ematical analysis of algorithms for the pur-
poses of determining their consumption of re-
sources such as the amount of total work they
perform, the energy they consume, the time to
execute, and the memory or storage space that
they require. When analyzing algorithms, it
is important to be precise enough so that we
can compare different algorithms to assess for
example their suitability for our purposes or to
select the better one, and to be abstract enough
so that we don’t have to look at minute details
of compilers and computer architectures.

To find the right balance between precision
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48 CHAPTER 3. ALGORITHM ANALYSIS

and abstraction, we rely on two levels of ab-
straction: asymptotic analysis and cost mod-
els. Asymptotic analysis enables abstracting
over small factors contributing to the resource
consumption of an algorithm such as the exact
time a particular operation may require. Cost
models make precise the cost of operations
performed by the algorithm but usually only
up to the precision of the asymptotic analysis.
Of the two forms of cost models, machine-
based models and language-based models, in
this course, we use a language-based cost model.
Perhaps the most important reason for this is
that when using a machine-based cost model,
the complexity of both the analysis and the
specification of the algorithm increases because
of the need to reason about the mapping paral-
lel algorithm to actual parallel hardware, which
usually involves scheduling of parallel com-
putations over multiple processors.

In the rest of this chapter, we present a brief
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3.1. ASYMPTOTIC COMPLEXITY 49

overview of asymptotic notation, and then dis-
cuss cost models and define the cost models
used in this course. We finish with recurrence
relations and how to solve them.

3.1 Asymptotic Complexity

If we analyze an algorithm precisely, we usu-
ally end up with an equation in terms of a vari-
able characterizing the input. For example,
by analyzing the work of the algorithm A for
problem P in terms of its input size, we may
obtain the equation: WA(n) = 2n log n+3n+
4 log n+5. By applying the analysis method to
another algorithm, algorithm B, we may de-
rive the equation: WB(n) = 6n + 7 log2 n +
8 log n + 9.

When given such equations, how should we
interpret them? For example, which one of the
two algorithm should we prefer? It is not easy
to tell by simply looking at the two equations.
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But what we can do is to calculate the two
equations for varying values of n and pick the
algorithm that does the least amount of work
for the values of n that we are interested in.

In the common case, in computer science,
what we care most about is how the cost of
an algorithm behaves for large values of n—
the input size. Asymptotic analysis offers a
technique for comparing algorithms at such
large input sizes. For example, for the two
algorithms that we considered in our exam-
ple, via asymptotic analysis, we would derive
WA(n) = Θ(n log n) and WB(n) = Θ(n).
Since the first function n log n grows faster that
the second n, we would prefer the second al-
gorithm (for large inputs). The difference be-
tween the exact work expressions and the “asymp-
totic bounds” written in terms of the “Theta”
functions is that the latter ignores so called
constant factors, which are the constants in
front of the variables, and lower-order terms,
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which are the terms such as 3n and 4 log n that
diminish in growth with respect to n log n as
n increases.

In addition to enabling us to compare algo-
rithms, asymptotic analysis also allows us to
ignore certain details such as the exact time an
operation may require to complete on a partic-
ular architecture. Specifically, when design-
ing our cost model, we take advantage of this
to assign most operations unit costs even if
they require more that unit work.

Question 3.1. Do you know of an algo-
rithm that compared to other algorithms
for the same problem, performs asymptot-
ically better at large inputs but poorly at
smaller inputs.
Compared to other algorithms solving the

same problem, some algorithm may perform
better on larger inputs than on smaller ones.
A classical example is the merge-sort algo-
rithm that performs Θ(n log n) work but per-
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forms much worse on smaller inputs than the
asymptotically less efficient Θ(n2)-work in-
sertion sort. Note that we may not be able to
tell that insertion-sort performs better at small
input sizes by just comparing their work asymp-
totically. To do that, we will need to compare
their actual work equations which include the
constant factors and lower-order terms that asymp-
totic notation omits.

We now consider the three most important
asymptotic functions, the “Big-Oh”, “Theta”,
and “Omega.” We also discuss some impor-
tant conventions that we will follow when do-
ing analysis and using these notations. All of
these asymptotic functions are defined based
on the notion of asymptotic dominance, which
we define below. Throughout this chapter and
more generally in this course, the cost func-
tions that we consider must be defined as func-
tions whose domains are natural numbers and
whose range is real numbers. Such functions
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are sometimes called numeric functions.

Definition 3.2 (Asymptotic dominance).
Let f (·) and g(·) be two (numeric) func-
tions, we say that f (·) asymptotically dom-
inates g(·) if there exists positive con-
stants c and n0 such that

|g(n)| ≤ c · f (n).

When a function f (·) asymptotically dom-
inates another g(·), we say that f (·) grows
faster than g(·): the absolute value of g(·)
does not exceed a constant multiple of f (·)
for sufficiently large values.

Big-Oh: O(·). The asymptotic expression O(f (n))
is the set of all functions that are asymptoti-
cally dominated by the function f (n). Intu-
itively this means that the set consists of the
functions that grow at the same or slower rate
than f (n). We write g(n) ∈ O(f (n)) to refer
to a function g(n) that is in the set O(f (n)).
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We often think of f (n) being an upper bound
for g(n) because f (n) grows faster than f (n)
as n increases.

Definition 3.3. For a function g(n), we say
that g(n) ∈ O(f (n)) if there exist positive
constants n0 and c such that for all n ≥
n0, we have g(n) ≤ c · f (n).

If g(n) is a finite function (g(n) in finite for
all n), then it follows that there exist constants
k1 and k2 such that for all n ≥ 1,

g(n) ≤ k1 · f (n) + k2,

where, for example, we can take k1 = c and
k2 =

∑n0
i=1 |g(i)|.

Remark 3.4. Make sure to become very
comfortable with asymptotic analysis.
Also its different versions such as the Θ(·)
and Ω(·).
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Exercise 3.5. Can you illustrate graphi-
cally when g(n) ∈ O(f (n))? Show dif-
ferent cases by considering different func-
tions, to hone your understanding.

Omega notation Ω(·). The “big-oh” notation gives us
a way to upper bound a function but it says
nothing about lower bounds. The asymptotic
expressionOmega(f (n)) is the set of all func-
tions that asymptotically dominate the func-
tion f (n). Intuitively this means that the set
consists of the functions that grow faster than f (n).
We write g(n) ∈ Ω(f (n)) to refer to a function
g(n) that is in the set Ω(f (n)). We often think
of f (n) being a lower bound for g(n).

Definition 3.6. For a function g(n), we say
that g(n) ∈ Ω(f (n)) if there exist positive
constants n0 and c such that for all n ≥
n0, we have 0 ≤ g(n) ≤ c · f (n).
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Theta notation: Θ(·). The asymptotic expression Θ(f (n))
is the set of all functions that grow at the same
rate as f (n). In other words, the set Θ(f (n))
is the set of functions that are both in O(f (n))
and Ω(f (n)). We write g(n) ∈ Θ(f (n)) to re-
fer to a function g(n) that is in the set Θ(f (n)).
We often think of f (n) being a tight bound for
g(n).

Definition 3.7. For a function g(n), we say
that g(n) ∈ Θ(f (n)) if there exist positive
constants n0, c1, and c2 such that for all
n ≥ n0, we have 0 ≤ c1 · f (n) ≤ g(n) ≤
c2 · f (n).

Important conventions. Even though the asymptotic no-
tations O(·),Θ(·),Ω(·) all denote sets, we use
the equality relation instead of set member-
ship to state that a function belongs to an asymp-
totic class, e.g., g(n) = O(f (n)) instead of
g(n) ∈ O(f (n)). This notation makes it eas-
ier to use the asymptotic notation. For exam-
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ple, in an expression such as 4W (n/2)+O(n),
the O(n) refers to some function g(n) ∈ O(n)
that we care not to specify. Be careful, if there
are asymptotics are used multiple times an ex-
pression, especially in equalities or other re-
lations. For example, in 4W (n/2) + O(n) +
Θ(n2), the O(n) and Θ(n2) refer to functions
g(n) ∈ O(n) and h(n) ∈ O(n2) that we care
not to specify. But in 4W (n/2) + O(n) =
Θ(n2), we mean to say that the equality is sat-
isfied such that for any function g(n) = O(n)
and we can find some function h(n) = Θ(n2)
to satisfy the equality.

3.2 Cost Models: Machine and Language Based

Essentially any analysis must assume a cost
model that specifies the resource cost of the
operations that can be performed by an algo-
rithm. Over time, two ways to define cost
models have emerged: machine-based and language-
January 23, 2015 (DRAFT, PPAP)
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based models.

A machine-based model defines the cost of
each (kind of) instruction that can be executed
by the machine. When using a machine-based
model for analysis, we study the instructions
executed by the machine when running an al-
gorithm to bound the resources of interest. A
language-based model defines cost as a func-
tion from the expressions of the language to
cost metric. Such a function is usually defined
as a recursive function over the different forms
of expressions in the language. When using
a language-based model for analysis, we ana-
lyze the algorithm by using the cost function
provided by the model.

Since we are usually interested in perform-
ing asymptotic analysis, we can usually sim-
plify our cost functions in both models by ig-
noring “constant factors” that depend on the
specifics of the actual practical hardware our
algorithms may execute on. For example, in
January 23, 2015 (DRAFT, PPAP)
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a machine model, we can assign unit costs
to many different kinds of instructions, even
though some may be more expensive than oth-
ers. Similarly, in a language-based model, we
can assign unit costs to all primitive opera-
tions on numbers, even though the costs of
such operations usually vary.

Question 3.8. What are the advantages of
using a machine based and a language-
based model?
There are certain advantages and disadvan-

tages to both models.
The advantage of using machine models is

that it is easier to predict the cost of an algo-
rithm when it is executed on actual hardware
that is consistent with the machine model. The
disadvantage is the complexity of analysis and
expressiveness of the languages that can be
used for specifying the algorithms. When us-
ing a machine model, we have to reason about
how the algorithm compiles and runs on that
January 23, 2015 (DRAFT, PPAP)
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machine. For sequential programs this can be
straightforward if the algorithm is expressed
in a language that maps easily to the machine
model. For example, if we express our algo-
rithm in a low-level language such as C, cost
analysis based on a machine model that rep-
resents a von Neumanm machine is straight-
forward because there is an almost one-to-one
mapping of statements in C to the instructions
of such a machine. For higher-level languages,
this becomes somewhat trickier. There may be
uncertainties, for example, about the cost of
automatic memory management, or the cost
of dispatching in an object-oriented language.
For parallel programs, cost analysis based on
machine models even more tricky, since we
may have to reason about how parallel tasks of
the algorithm are scheduled on the processors
of the machine. Due to this gap between the
level at which algorithms are analyzed (ma-
chine level) and the level they are usually im-
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plemented (programming-language level), there
can be difficulties in implementing an algo-
rithm in a high-level language in such a way
that matches the bound given by the analysis.

The advantage of using language-based mod-
els is that it is easier to predict analyze the
algorithm. The disadvantage is that the pre-
dicted cost bounds may not precisely reflect
the cost observed when the algorithm is ex-
ecuted on actual hardware. This imprecision
of the language model, however, can be min-
imized and in fact essentially eliminated by
defining the model to be consistent with the
machine model and the programming-language
environment assumed such as the compiler and
the run-time system. When analyzing algo-
rithms in a language-based model we don’t
need to care about how the language compiles
or runs on the machine. Costs are defined di-
rectly in the language, specifically its syntax
and its dynamic semantics that specifies how
January 23, 2015 (DRAFT, PPAP)
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to evaluate the expressions of the language.
We thus simply consider the algorithm as ex-
pressed and analyze the cost by applying the
cost function provided by the model.

January 23, 2015 (DRAFT, PPAP)



3.2. COST MODELS: MACHINE AND LANGUAGE BASED 63

Remark 3.9. We note that both machine
models and language-based models usu-
ally abstract over existing architectures
and programming languages respectively.
This is necessary because we wish to our
cost analysis to have broader relevance
than just a specific architecture or pro-
gramming language. For example, ma-
chine models are usually defined to be
valid over many different architectures
such as an Intel Nehalem or AMD Phe-
nom. Similarly, language-based models
are defined to be applicable to a range of
languages. In this course, we use an ab-
stract language that is essentially lambda
calculus with some syntactic sugar. As
you may know the lambda calculus can be
used to model many languages.

In the sequential algorithms literature, much
work is based on machine models rather than
language-based model, partly because the map-
January 23, 2015 (DRAFT, PPAP)
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ping from language constructs to machine cost
(time or number of instructions) can be made
simple in low-level languages, and partly be-
cause much work on algorithm predates or co-
incides with the development of higher-level
languages. For parallel algorithms, however,
many years of experience shows that machine
based models are difficult to use, especially
when considering higher-level languages that
are commonly used in practice today. For this
reason, in this course we will use a language-
based cost model. Our language-based model
allows us to use abstract costs, work and span,
which have no direct meaning on a physical
machine.

3.3 The RAM Model for Sequential Computation

Traditionally, algorithms have been analyzed
in the Random Access Machine (RAM)1 model.

1Not to be confused with Random Access Memory (RAM)
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This model assumes a single processor access-
ing unbounded memory indexed by the non-
negative integers. The processor interprets se-
quences of machine instructions (code) that
are stored in the memory. Instructions include
basic arithmetic and logical operations (e.g.
+, -, *, and, or, not), reads from and writes to
arbitrary memory locations, and conditional
and unconditional jumps to other locations in
the code. The cost of a computation is mea-
sured in terms of the number of instructions
executed by the machine, and is referred to as
time.

This model is quite adequate for analyzing
the asymptotic runtime of sequential algorithms;
most work on sequential algorithms to date
has used this model. It is therefore impor-
tant to understand the model, or at least know
what it is. One reason for the RAM’s success
is that it is relatively easy to reason about the
cost of algorithms because algorithmic pseudo
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code and sequential languages such as C and
C++ can easily be mapped to the model. The
model, however, should only be used for de-
riving asymptotic bounds (i.e., using big-O,
big-Theta and big-Omega) and not for trying
to predict exact runtimes. One reason for this
is that on a real machine not all instructions
take the same time, and furthermore not all
machines have the same instructions.

We note that one problem with the RAM
model is that it assumes that accessing all mem-
ory locations has the same cost. On real ma-
chines this is not the case. In fact, there can be
a factor of over 100 between the time for ac-
cessing a word of memory from the first level
cache and accessing it from main memory. Var-
ious extensions to the RAM model have been
developed to account for this cost. For exam-
ple one variant is to assume that the cost for
accessing the ith memory location is f (i) for
some function f , e.g. f (i) = log(i). Fortu-
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nately, however, most of the algorithms that
turn out to be good in these more detailed mod-
els are also good in the RAM. Therefore ana-
lyzing algorithms in the simpler RAM model
is often a reasonable approximation to analyz-
ing in the more refined models. Hence the
RAM has served quite well despite not fully
accounting for the variance in memory costs.
The model we use in this course also does not
account for the variance in memory costs, but
as with the RAM the costs can be refined.

3.4 The Parallel RAM Model

For our purposes, the more serious problem
with the RAM model is that it is sequential.
One way to extend the RAM to allow par-
allelism is simply to use multiple processors
which share the same memory. This is re-
ferred to as the Parallel Random Access Ma-
chine (PRAM). In the model all of p proces-
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sors run the same instruction on each step, al-
though typically on different data. For exam-
ple if we had an array of length p, each proces-
sor could add one to its own element allowing
us to increment all elements of the array in
constant time.

We will not be using the PRAM model since
it is awkward to work with, both because it
is overly synchronous and because it requires
the user to map computation to processors. For
simple parallel loops over n elements we could
imagine dividing up the elements evenly among
the processors—about n/p each, although there
is some annoying rounding required since n is
typically not a multiple of p. If the cost of each
iteration of the loop is different then we would
further have to add some load balancing. In
particular simply giving n/p to each proces-
sor might be the wrong choice—one proces-
sor could get stuck with all the expensive it-
erations. For computations with nested paral-
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lelism, such as divide-and-conquer algorithms
the mapping is much more complicated, espe-
cially given the highly synchronous nature of
the model.

Even though we don’t use the PRAM model,
most of the ideas presented in this course also
work with the PRAM, and many of them were
originally developed in the context of the PRAM.

3.5 The Work-Span Model

In this course, we will use a language-based
cost model to analyze parallel algorithms. From
the discussion in Section 3.2, you may recall
that the key point that we have be careful about
in defining a cost model is that it is can be re-
alized by implementing the necessary compi-
lation and run-time system support. Indeed,
for the cost-model that we describe here, this
is the case (see Section 3.6 for more details).
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Work and Span. The cost model that we use through-
out this course is based on two cost metrics:
work and span. Roughly speaking, the work
corresponds to the total number of operations
we perform, and span to the longest chain of
dependencies in the computation.

Example 3.10.
W (7 + 3) = Work of adding 7 and 3
S(fib(11)) = Span for calculating the 11th Fibonacci number
W (mySort(S)) = Work for mySort applied to the sequence S

Note that in the third example the sequence
S is not defined within the expression. There-
fore we cannot say in general what the work
is as a fixed value. However, we might be
able to use asymptotic analysis to write a cost
in terms of the length of s, and in particu-
lar if mySort is a good sorting algorithm we
would have:

W (mySort(S)) = O(|S| log |S|) .
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Often instead of writing |S| to indicate the size
of the input, we use n orm as shorthand. Also
if the cost is for a particular algorithm we use a
subscript to indicate the algorithm. This leads
to the following notation

WmySort(n) = O(n log n) .

where n is the size of the input of mysort.
When obvious from the context (e.g. when
in a section on analyzing mySort) we some-
times drop the subscript, givingW (n) = O(n log n).

Definition 3.11 shows the precise definitions
of the work and span of PML, the language
that we use in this course, by using composi-
tional rules over expressions in the language.
In the definition and throughout this course,
we write W (e) for the work of the expres-
sion and S(e) for its span. As would be ex-
pected from a language-based model, the def-
inition follows the definition of the expression
language for PML (Section 1.5). We make
January 23, 2015 (DRAFT, PPAP)
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one simplifying assumption in the presenta-
tion: instead of considering general bindings,
we only consider the case where a single vari-
able is bound to the value of the expression.
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Definition 3.11 (PML Cost Model). The
work and span of PML expressions (Sec-
tion 1.5) are defined as follows. The no-
tation Eval(e) evaluates the expression e
and returns the result, and the notation
[v/x] e indicates that all free (unbound)
occurrences of the variable x in the ex-
pression e are replaced with the value v.

W (v) = 1

W (fn p⇒ e) = 1

W (e1 e2) = W (e1) + W (e2) + W ([Eval(e2)/x] e3) + 1
where Eval(e1) = fn x⇒ e3

W (e1 op e2) = W (e1) + W (e2) + 1

W (e1 , e2) = W (e1) + W (e2) + 1

W (e1 || e2) = W (e1) + W (e2) + 1

W (if e1 then e2 else e3) =

{
W (e1) + W (e2) + 1 Eval(e1) = True
W (e1) + W (e3) + 1 otherwise

W (let x = e1 in e2 end) = W (e1) + W ([Eval(e1)/x] e2) + 1

W ((e)) = W (e)

W (v) = 1

S(fn p⇒ e) = 1

S(e1 e2) = S(e1) + S(e2) + 1

S(e1 op e2) = S(e1) + S(e2) + 1

S(e1 , e2) = S(e1) + S(e2) + 1

S(e1 || e2) = max (S(e1), S(e2)) + 1

S(if e1 then e2 else e3) =

{
S(e1) + S(e2) + 1 Eval(e1) = True
S(e1) + S(e3) + 1 otherwise

S(let x = e1 in e2 end) = S(e1) + S([Eval(e1)/x] e2) + 1

S((e)) = S(e)
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As an example, consider the expression e1 +
e2 where e1 and e2 are themselves other ex-
pressions (e.g. function calls). Note that this
is an instance of the rule the case e1 op e2,
where op is a plus operation. In PML, we
evaluate this expressions by first evaluating e1
and then e2 and then computing the sum. The
work of the expressions is therefore

W (e1 + e2) = W (e1) + W (e2) + 1.

The additional 1 accounts for computation of
the sum.

For the let expression we need to first eval-
uate e1 and assign it to x before we can eval-
uate e2. Hence the fact that the span is com-
posed sequentially, i.e., by adding the spans.

Example 3.12. Let expressions compose
sequentially.

W (let a = f(x) in g(a) end) = 1 + W (f (x)) + W (g(a))

S(let a = f(x) in g(a) end) = 1 + S(f (x)) + S(g(a))
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Question 3.13. In PML, when are expres-
sions evaluated in parallel?

In PML, we use the notation (e1 || e2) to
mean that the two expressions are evaluated
in parallel. The result is a pair of values con-
taining the two results. As a result, the work
and span for all expressions except for the par-
allel construct || are defined in the same way.
As we will see later in the course, in addition
to the || construct, we assume the set-like no-
tation such as {f (x) : x ∈ A} to be evaluated
in parallel, i.e., all calls to f (x) run in parallel.
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Example 3.14. The expression
(fib(6) || fib(7)) runs the two calls
to fib in parallel and returns the pair
(8, 13). It does work

1 + W (fib(6)) + W (fib(7))

and span

1 + max(S(fib(6)), S(fib(7))) .

If we know that the span of fib grows
with the input size, then the span can be
simplified to 1 + S(fib(7)).
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Remark 3.15. Since in this book we are
assuming purely functional programs, it
is always safe to run things in parallel if
there is no explicit sequencing. Since in
PML, we evaluate e1 and e2 sequentially,
the span of the expression is calculated in
the same way:

S(e1 + e2) = S(e1) + S(e2) + 1.

Note that this does not mean that the span
and the work of the expressions are the
same!
Since PML is purely functional language,
we could have in fact evaluated e1 and e2
in parallel, wait for the to complete and
perform the summation. In this case the
span of would have been

S(e1 + e2) = max (S(e1), S(e2)) + 1.

Note that since we have to wait for both
of the expressions to complete, we take
the maximum of their span. Since the can
perform the final summation serially after
they both return, we add the 1 to the final
span.
In this book, however, to make it more
clear whether expressions are evaluated
sequentially or in parallel we will assume
that expressions are evaluated in paral-
lel only when indicated by the syntax, i.e.,
when they are composed with the explicit
parallel form.
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Remark 3.16. As there is no || con-
struct in the ML, in your assignments
you will need to specify in comments
when two calls run in parallel. We
will also supply an ML function par
(f1,f2) with type (unit -> α) ×
(unit -> β) -> α×β. This function
executes the two functions that are passed
in as arguments in parallel and returns
their results as a pair. For example:
par (fn => fib(6), fn =>
fib(7))
returns the pair (8, 13). We need to wrap
the expressions in functions in ML so that
we can make the actual implementation
run them in parallel. If they were not
wrapped both arguments would be evalu-
ated sequentially before they are passed to
the function par.
Also in the ML code you do not have the
set notation {f (x) : x ∈ A}, but as men-
tioned before, it is basically equivalent to
a map. Therefore, for ML code you can
use the rules:

W (map f 〈 s0, . . . , sn−1 〉) = 1+

n−1∑
i=0

W (f (si))

S(map f 〈 s0, . . . , sn−1 〉) = 1+
n−1
max
i=0

S(f (si))
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Parallelism: An additional notion of cost that is
important in comparing algorithms is the par-
allelism of an algorithm. Parallelism, some-
times called average parallelism, is simply de-
fined as the work over the span:

P =
W

S

Parallelism informs us approximately how
many processors we can use efficiently.

Example 3.17. For a mergesort with work
θ(n log n) and span θ(log2 n) the paral-
lelism would be θ(n/ log n).
Suppose n = 10, 000 and if W (n) =
θ(n3) ≈ 1012 and S(n) = θ(n log n) ≈
105 then P(n) ≈ 107, which is a lot of par-
allelism. But, if W (n) = θ(n2) ≈ 108 then
P(n) ≈ 103, which is much less paral-
lelism. The decrease in parallelism is not
because of the span was large, but because
the work was reduced.
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Question 3.18. What are ways in which we
can increase parallelism?

We can increase parallelism by decreasing
span and/or increasing work. Increasing work,
however, is not desirable because it leads to an
inefficient algorithm.

Definition 3.19 (Work efficiency). We say
that a parallel algorithm is work efficient
if it perform asymptotically the same work
as the best known sequential algorithm for
that problem.

Example 3.20. A (comparison-based)
parallel sorting algorithm with Θ(n log n)
work is work efficient; one with Θ(n2) is
not, because we can sort sequentially with
Θ(n log n) work.

Designing parallel algorithms. In parallel-algorithm design,
we aim to keep parallelism as high as possible
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but without increasing work. In general the
goals in designing efficient algorithms are

1. first priority: to keep work as low as possi-
ble, and

2. second priority: keep parallelism as high
as possible (and hence the span as low as
possible).

In this course we will mostly cover work-
efficient algorithms where the work is the same
or close to the same as the best sequential time.
Indeed this will be our goal throughout the
course. Now among the algorithm that have
the same work as the best sequential time we
will try to achieve the greatest parallelism.

3.6 Scheduling

An important advantage of the work-depth model
is that is allows us to design parallel algorithms
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without having to worry about the details of
how they are executed on an actual parallel
machine. In other words, we never have to
worry about mapping of the parallel computa-
tion to processors, i.e., scheduling.

Question 3.21. Is scheduling a challeng-
ing task? Why?
Scheduling can be challenging because a par-

allel algorithm generate tasks on the fly as it
runs, and it can generate a massive number of
them, typically much more than the number of
processors available when running.

Example 3.22. A parallel algorithm with
Θ(n/ log n) parallelism can easily gener-
ate millions parallel subcomptutations or
task at the same time, even when running
on a multicore computer with for example
10 cores.

Scheduler. Mapping parallel tasks to available pro-
cessor so that each processor remains busy as
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much as possible is the task of a scheduler.
The scheduler works by taking all parallel tasks,
which are generated dynamically as the algo-
rithm evaluates, and assigning them to proces-
sors. If only one processor is available, for
example, then all tasks will run on that one
processor. If two processor are available, the
task will be divided between the two.

Question 3.23. Can you think of a
scheduling algorithm?

Greedy scheduling. We say that a scheduler is greedy
if whenever there is a processor available and
a task ready to execute, then it assigns the task
to the processor and start running it imme-
diately. Greedy schedulers have a very nice
property that is summarized by the following:
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Definition 3.24. The greedy scheduling
principle says that if a computation is run
on p processors using a greedy scheduler,
then the total time (clock cycles) for run-
ning the computation is bounded by

Tp <
W

p
+ S(3.1)

where W is the work of the computation,
and S is the span of the computation (both
measured in units of clock cycles).

This is actually a very powerful statement.
The time to execute the computation cannot
be any better than W

p clock cycles since we
have a total of W clock cycles of work to do
and the best we can possibly do is divide it
evenly among the processors. Also note that
the time to execute the computation cannot be
any better than S clock cycles since S repre-
sents the longest chain of sequential depen-
dencies. Therefore the very best we could do
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is:

Tp ≥ max

(
W

p
, S

)
We therefore see that a greedy scheduler does

reasonably close to the best possible. In par-
ticular Wp +S is never more than twice max(Wp , S)

and when W
p � S the difference between the

two is very small. Indeed we can rewrite equa-
tion 3.1 above in terms of the parallelism P =
W/S as follows:

Tp <
W

p
+ S

=
W

p
+
W

P

=
W

p

(
1 +

p

P

)
Therefore as long as P� p (the parallelism is
much greater than the number of processors)
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then we get near perfect speedup. (Speedup is
W/Tp and perfect speedup would be p).

Remark 3.25. No real schedulers are fully
greedy. This is because there is overhead
in scheduling the job. Therefore there
will surely be some delay from when a
job becomes ready until when it starts up.
In practice, therefore, the efficiency of a
scheduler is quite important to achieving
good efficiency. Also the bounds we give
do not account for memory affects. By
moving a job we might have to move data
along with it. Because of these affects the
greedy scheduling principle should only
be viewed as a rough estimate in much
the same way that the RAM model or any
other computational model should be just
viewed as an estimate of real time.
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3.7 Analysis of Shortest-Superstring Algorithms

As examples of how to use our cost model we
will analyze a couple of the algorithms we de-
scribed for the shortest superstring problem:
the brute force algorithm and the greedy algo-
rithm.

3.7.1 The Brute Force Shortest Superstring Algorithm

Recall that the idea of the brute force algo-
rithm for the SS problem is to try all permuta-
tions of the input strings and for each permu-
tation to determine the maximal overlap be-
tween adjacent strings and remove them. We
then pick whichever remaining string is short-
est, if there is a tie we pick any of the shortest.
We can calculate the overlap between all pairs
of strings in a preprocessing phase. Let n be
the size of the input S andm be the total num-
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ber of characters across all strings in S, i.e.,

m =
∑
s∈S
|s|.

Note that n ≤ m. The preprocessing step can
be done inO(m2) work andO(log n) span (see
analysis below). This is a low order term com-
pared to the other work, as we will see, so we
can ignore it.

Now to calculate the length of a given per-
mutation of the strings with overlaps removed
we can look at adjacent pairs and look up their
overlap in the precomputed table. Since there
are n strings and each lookup takes constant
work, this requiresO(n) work. Since all lookups
can be done in parallel, it will require only
O(1) span. Finally we have to sum up the
overlaps and subtract it fromm. The summing
can be done with a reduce in O(n) work and
O(log n) span. Therefore the total cost isO(n)
work and O(log n) span.
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As we discussed in the last lecture the total
number of permutations is n!, each of which
we have to check for the length. Therefore
the total work is O(nn!) = O((n + 1)!). What
about the span? Well we can run all the tests in
parallel, but we first have to generate the per-
mutations. One simple way is to start by pick-
ing in parallel each string as the first string,
and then for each of these picking in parallel
another string as the second, and so forth. The
pseudo code looks something like this:

1 function permutations(S) =
2 if |S| = 1 then {S}
3 else
4 flatten({append(〈 s 〉 , p)
5 : s ∈ S, p ∈ permutations(S \ s)})

What is the span of this code?

3.7.2 The Greedy Shortest Superstring Algorithm

We’ll consider a straightforward implementa-
tion, although the analysis is a little tricky since
the strings can vary in length. First we note
that calculating overlap(s1, s2) and join(s1, s2)
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can be done inO(|s1||s2|) work andO(log(|s1|+
|s2|)) span. This is simply by trying all over-
lap positions between the two strings, seeing
which ones match, and picking the largest. The
logarithmic span is needed for picking the largest
matching overlap using a reduce.

Let Wov and Sov be the work and span for
calculating all pairs of overlaps (the line {(overlap
(si, sj), si, sj) : si ∈ S, sj ∈ S, si 6= sj}),
and for our set of input snipets S recall that
m =

∑
x∈S |x|.
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We have

Wov ≤
n∑
i=1

n∑
j=1

W (overlap(si, sj)))

=

n∑
i=1

n∑
j=1

O(|si||sj|)

≤
n∑
i=1

n∑
j=1

(k1 + k2|si||sj|)

= k1n
2 + k2

n∑
i=1

n∑
j=1

(|si||sj|)

= k1n
2 + k2

n∑
i=1

|si| n∑
j=1

|sj|


= k1n

2 + k2

n∑
i=1

(|si|m)

= k1n
2 + k2m

n∑
i=1

|si|

= k1n
2 + k2m

2

∈ O(m2) since m ≥ n.January 23, 2015 (DRAFT, PPAP)
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and since all pairs can be done in parallel,

Sov ≤
n

max
i=1

n
max
j=1

S(overlap(si, sj)))

∈ O(logm)

The arg max for finding the maximum overlap
can be computed inO(m2) work andO(logm)
span using a simple reduce. The other steps
have less work and span. Therefore, not in-
cluding the recursive call each call to greedyApproxSS
costs O(m2) work and O(logm) span.

Finally, we observe that each call to greedyApproxSS
creates S′ with one fewer element than S, so
there are at most n calls to greedyApproxSS.
These calls are inherently sequential because
one call must complete before the next call
can take place. Hence, the total cost for the al-
gorithm isO(nm2) work andO(n logm) span,
which is highly parallel.

Exercise 3.26. Come up with a more ef-
ficient way of implementing the greedy
method.
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3.8 Cost Analysis with Recurrences

The cost of many of the algorithms considered
in this course can be analyzed by using recur-
rences, which are equality or inequality rela-
tions that specify a quantity by reference to
itself. Such recurrences are especially com-
mon in recursive algorithms, where they usu-
ally follows the recursive structure of the al-
gorithm, but are a function of size of the argu-
ments instead of the actual values. While re-
currence relations are informative to the trained
eye, they are not as useful as closed form solu-
tions, which are immediately available. In this
section, we will review the three main meth-
ods for solving recurrences.

For example, we can write the work of the
merge-sort algorithm with a recurrence of the
form W (n) = 2W (n/2) + O(n). This corre-
sponds to the fact that for an input of size n,
merge sort makes two recursive calls of size
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n/2, and also performs O(n) other work. In
particular the merge itself requiresO(n) work.
Similarly for span we can write a recurrence
of the form S(n) = max(S(n/2), S(n/2)) +
O(log n) = S(n/2) + O(log n). Since the two
recursive calls are parallel, we take the max-
imum instead of summing them as in work,
and since the merge function has to take place
after them and has spanO(log n) we addO(log n).

In the rest of this section, we discuss meth-
ods for solving such recurrences after noting
a few conventions commonly employed when
setting up and solving recurrences.

Conventions and techniques. When we analyze algorithm
using recurrences, we usually ignore several
technical details. For example, when stating
the recurrence for merge sort, we completely
ignored the bases cases, we stated only the re-
cursive case. A more precise statement of the
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recursion would be

W (n) =

{
O(1) if n ≤ 1
2W (n/2) + O(n) otherwise

Question 3.27. Why is this justified?
We justify omitting base cases because by def-
inition any algorithm performs constant work
on constant-size input. Considering the base
case usually changes the closed-form solution
of the recursion only by a constant factor, which
don’t matter in asymptotic analysis. Note how-
ever that an algorithm might have multiple cases
depending on the input size, and some of those
cases might not be constant. It is thus impor-
tant when writing the recursive relation to de-
termine constants from non-constants.

Question 3.28. There is still an impre-
cision in the recursion stated above for
merge sort. Can you see what it is?

There is one more imprecision in the recur-
sion that we stated for merge sort. Note that
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the size of the input to merge sort n, and in
fact many other algorithms, are natural num-
bers. But n/2 is not always a natural number.
In fact, the recursion that we stated is precise
only for powers of 2. A more precise state-
ment of the recursion would have been:

W (n) =

{
O(1) if n ≤ 1
W (dn/2e) + W (bn/2c) + O(n) otherwise.

We ignore floors and ceiling because they change
the size of the input by at most one, which
again does not usually affect the closed form
by more than a constant factor.

When stating recursions, we may use asymp-
totic notation to express certain terms such as
the O(n) in our example. How do you per-
form calculations with such terms? The trou-
ble is that if you add any twoO(n) terms what
you get is a O(n) but you can’t do that addi-
tion a non-constant many times and still have
the result beO(n). To prevent mistakes in cal-
culations, we often replace such terms with a
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non-asymptotic term and do our calculations
with that term. For example, we may replace
O(n) with n, 2n, 2n + log n + 3, 3n + 5, or
with something parametric such as c1n + c2
where c1 and c2 are constants. Such kinds of
replacement may introduce some more impre-
cision to our calculations but again they usu-
ally don’t matter as they change the closed-
form solution by a constant factor.

The Tree Method. Using the recursionW (n) = 2W (n/2)+
O(n), we will review the tree methodwhich
you have seen in 15-122 and 15-251. Our goal
is to derive a closed form solution to this re-
cursion.

The idea of the tree method is to consider
the recursion tree of the recurrence and to de-
rive an expression that bounds the cost at each
level. We can then calculate the total cost by
summing over all levels.
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To apply the method, we start by replacing
the asymptotic notation in the recursion. By
the definition of asymptotic complexity, we
can establish that

W (n) ≤ 2W (n/2) + c1 · n + c2,

where c1 and c2 are constants. We now draw a
tree to represent the recursion. Since there are
two recursive calls, the tree is a binary tree,
where each node has 2 children, whose input
is half the size of the size of the parent node.
We then annotate each node in the tree with
its cost noting that if the problem has size m,
then the cost, excluding that of the recursive
calls, is at most c1 ·m + c2. Figure 3.1 shows
the recursion tree annotated with costs.

To apply the tree method, there are some
key questions we should ask ourselves to aid
drawing out the recursion tree and to under-
stand the cost associated with the nodes:

• How many levels are there in the tree?
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c1n + c2

c1(n/2) + c2 c1(n/2) + c2

c1(n/4) + c2 c1(n/4) + c2 c1(n/4) + c2 c1(n/4) + c2

c1 n + c2

c1 n + 2 c2

c1 n + 4 c2

n

n/2

n/4

Figure 3.1: Recursion three for the recursion W (n) ≤ 2W (n/2) + c1m + c2. Each level is
annotated with the problem size and the cost at that level.

•What is the problem size at level i?

•What is the cost of each node in level i?

• How many nodes are there at level i?

•What is the total cost across level i?

Our answers to these questions lead to the
following analysis: We know that level i (the
root is level i = 0) contains 2i nodes, each
costing at most c1(n/2i) + c2. Thus, the total
cost in level i is at most

2i ·
(
c1
n

2i
+ c2

)
= c1 · n + 2i · c2.

Since we keep halving the input size, the
number of levels is bounded by 1+log n. Hence,
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we have

W (n) ≤
log n∑
i=0

(
c1 · n + 2i · c2

)
= c1n(1 + log n) + c2(n + n

2 + n
4 + · · · + 1)

≤ c1n(1 + log n) + 2c2n

∈ O(n log n),

where in the second to last step, we apply the
fact that for a > 1,

1 + a + · · · + an =
an+1 − 1

a− 1
≤ an+1.

The Brick Method, a Variant of the Tree Method. The tree method
involves determining the depth of the tree, com-
puting the cost at each level, and summing the
cost across the levels. Usually we can easily
figure out the depth of the tree and the cost of
at each level relatively easily—but then, the
hard part is taming the sum to get to the final
answer.
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It turns out that there is a special case in
which the analysis becomes simpler: when the
costs at each level grow geometrically, shrink
geometrically, or stay approximately equal. By
recognizing whether the recurrence conforms
with one of these cases, we can almost imme-
diately determine the asymptotic complexity
of that recurrence.

The vital piece of information is the ratio of
the cost between adjacent levels. Let Li de-
note the total cost at level i of the recursion
tree. We now check if Li are consistent with
one of the following three cases. For the dis-
cussion below let d denote the depth of the
tree.
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Leaves
Dominated

Balanced Root
Dominated

Each level is larger than the
level before it by at least a con-
stant factor. That is, there is a
constant ρ > 1 such that for all
level i, Li+1 ≥ ρ · Li

++
++++
++++++

++++++++

All levels have approximately
the same cost.

++++++++
++++++++
++++++++
++++++++

Each level is smaller than the
level before it by at least a con-
stant factor. That is, there is a
constant ρ < 1 such that for all
level i, Li+1 ≤ ρ · Li

+++++++++
++++++
++++
++

Implication:
O(Ld)

Implication:
O(d·maxiLi)

Implication:
O(L0)

The house is
stable, with a
strong foun-
dation.

The house
is sort of
stable, but
don’t build
too high.

The house
will tip over.

You might have seen the “master method”
for solving recurrences in previous classes. We
do not like to use it since it only works for
special cases and does not give an intuition
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of what is going on. However, we will note
that the three cases of the master method cor-
respond to special cases of leaves dominated,
balanced, and root dominated.

The Substitution Method. Using the definition of big-O,
we know that

W (n) ≤ 2W (n/2) + c1 · n + c2,

where c1 and c2 are constants.
Besides using the recursion tree method, can

also arrive at the same answer by mathemati-
cal induction. If you want to go via this route
(and you don’t know the answer a priori), you’ll
need to guess the answer first and check it.
This is often called the “substitution method.”
Since this technique relies on guessing an an-
swer, you can sometimes fool yourself by giv-
ing a false proof. The following are some tips:

1. Spell out the constants. Do not use big-
O—we need to be precise about constants,
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so big-O makes it super easy to fool our-
selves.

2. Be careful that the induction goes in the
right direction.

3. Add additional lower-order terms, if neces-
sary, to make the induction go through.

Let’s now redo the recurrences above using
this method. Specifically, we’ll prove the fol-
lowing theorem using (strong) induction on n.

Theorem 3.29. Let a constant k > 0 be given.
If W (n) ≤ 2W (n/2) + k · n for n > 1 and
W (1) ≤ k for n ≤ 1, then we can find con-
stants κ1 and κ2 such that

W (n) ≤ κ1 · n log n + κ2.

Proof. Let κ1 = 2k and κ2 = k. For the base
case (n = 1), we check that W (1) = k ≤ κ2.
For the inductive step (n > 1), we assume that

W (n/2) ≤ κ1 · n2 log(n2) + κ2,
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And we’ll show that W (n) ≤ κ1 ·n log n+κ2.
To show this, we substitute an upper bound
for W (n/2) from our assumption into the re-
currence, yielding

W (n) ≤ 2W (n/2) + k · n
≤ 2(κ1 · n2 log(n2) + κ2) + k · n
= κ1n(log n− 1) + 2κ2 + k · n
= κ1n log n + κ2 + (k · n + κ2 − κ1 · n)

≤ κ1n log n + κ2,

where the final step follows because k · n +
κ2 − κ1 · n ≤ 0 as long as n > 1.
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Figure 3.2: Abstraction is a powerful technique in computer science. One reason why is that it
enables us to use our intelligence more effectively allowing us not to worry about all the details
or the reality. Paul Cezanne noticed that all reality, as we call it, is constructed by our intellect.
Thus he thought, I can paint in different ways, in ways that don’t necessarily mimic vision, and
the viewer can still create a reality. This allowed him to construct more interesting realities. He
used abstract, geometric forms to architect reality. Can you see them in his self-portrait? Do
you think that his self-portrait creates a reality that is much more three dimensional, with more
volume, more tactile presence than a 2D painting that would mimic vision? Cubists such as
Picasso and Braque took his ideas on abstraction to the next level.

.
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