
Recitation 4 – Scan Reloaded and Reductions

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2014)

February 4th, 2014

1 Announcements

• How did Skyline go?

• Bignum is out—get an early start!

• Questions about homework or lecture?

2 Scan Implementation

Scan is a complex operation, so we’re going to work through one level of recursion (not a whole
trace like you did for iterh on Minilab).

Let S = 〈1, 2,3, 4,5, 6,7, 8〉. We’ll look at scan op+ 0 S.

First, scan contracts the sequence to a new S′ by contracting every other pair of elements, giving us

S′ = 〈3, 7, 11, 15〉.

Then, a recursive call to scan op+ 0 S' will return:

(〈0, 3, 10, 21〉,36)

We then interleave values from S into S′, giving us the final scan of

(〈0, 1, 3, 6, 10, 15, 21, 28〉,36)

Note that this particular sequence is much easier to scan than certain other sequences—why?

Scan Reloaded and Reductions 15-210 (Spring 2014)

3 Scanning the Stock Market

You’re working as a consultant for the QADSAN stock market, and to maximize your profits you want
to determine the optimal times to buy and sell stocks. Instead of making predictions, however, you’re
going to look at all the opportunities you didn’t take in the past to make money on the market. Your
task is: given a sequence of stock prices over time S = 〈p1, . . . , pn〉, find the largest increase in price,

or
n

max
i=1

�

n
max
j=i+1

�

p j − pi

�

�

in O(n) work and O(log n) span.

fun stockMax (S : int seq) : int =

Solution 3.0

fun stockMarket (S : int seq) : int =
let val mins = scani Int.min (valOf Int.maxInt) S

val maxs = rev(scani Int.max 0 (rev S))
in reduce Int.max 0 (map2 op- maxs mins)
end

4 Reduction

1. Write a function rev which reverses the input sequence. Here’s the twist: you can only use the
following functions: map, reduce, empty, singleton, append, length, filter.

fun rev (S : 'a seq) : 'a seq =

Solution 4.0
reduce (fn (x, y) => append(y, x)) (empty()) (map singleton S)

2. Give a closed form for the work and span of rev under both the ArraySequence and
TreeSequence implementations. Given two sequences S and T of size n and m, the cost
bounds in ArraySequence for the above functions are:

Function Work Span
map

∑

e∈S
W(f (e)) max

e∈S
S(f (e))

reduce O(n) +
∑

f (x ,y)∈Or (f ,b,s)
W(f (x , y)) O(log n max

f (x ,y)∈Or (f ,b,s)
S(f (x , y)))

empty O(1) O(1)
singleton O(1) O(1)
append O(n+m) O(1)
length O(1) O(1)
filter

∑

e∈S
W(p(e)) O(log n) +max

e∈S
S(p(e))

2

Scan Reloaded and Reductions 15-210 (Spring 2014)

TreeSequence has identical bounds except append has O(log(n+m)) work and span, and
the span of map is log n plus the max term.

Solution 4.0 ArraySequence: W (n) ∈ O(n log n), S(n) ∈ O(log n)
TreeSequence: W (n) ∈ O(n), S(n) ∈ O(log2 n)

3

	Announcements
	Scan Implementation
	Scanning the Stock Market
	Reduction

