Recitation 4 - Scan Reloaded and Reductions

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2014)
February $4^{\text {th }}, 2014$

1 Announcements

- How did Skyline go?
- Bignum is out-get an early start!
- Questions about homework or lecture?

2 Scan Implementation

Scan is a complex operation, so we're going to work through one level of recursion (not a whole trace like you did for iterh on Minilab).

Let $S=\langle 1,2,3,4,5,6,7,8\rangle$. We'll look at scan op+ 0 S .
First, scan contracts the sequence to a new S^{\prime} by contracting every other pair of elements, giving us $S^{\prime}=\langle 3,7,11,15\rangle$.

Then, a recursive call to scan op+ $0 S^{\prime}$ will return:
($\langle 0,3,10,21\rangle, 36$)
We then interleave values from S into S^{\prime}, giving us the final scan of
($\langle 0,1,3,6,10,15,21,28\rangle, 36$)
Note that this particular sequence is much easier to scan than certain other sequences-why?

3 Scanning the Stock Market

You're working as a consultant for the QADSAN stock market, and to maximize your profits you want to determine the optimal times to buy and sell stocks. Instead of making predictions, however, you're going to look at all the opportunities you didn't take in the past to make money on the market. Your task is: given a sequence of stock prices over time $S=\left\langle p_{1}, \ldots, p_{n}\right\rangle$, find the largest increase in price, or $\max _{i=1}^{n}\left(\max _{j=i+1}^{n}\left(p_{j}-p_{i}\right)\right)$ in $O(n)$ work and $O(\log n)$ span.
fun stockMax (S : int seq) : int =

Solution 3.0

```
fun stockMarket (S : int seq) : int =
    let val mins = scani Int.min (valOf Int.maxInt) S
            val maxs = rev(scani Int.max 0 (rev S))
    in reduce Int.max 0 (map2 op- maxs mins)
    end
```


4 Reduction

1. Write a function rev which reverses the input sequence. Here's the twist: you can only use the following functions: map, reduce, empty, singleton, append, length, filter.
```
fun rev (S : 'a seq) : 'a seq =
```

Solution 4.0

```
reduce (fn (x, y) => append(y, x)) (empty()) (map singleton S)
```

2. Give a closed form for the work and span of rev under both the ArraySequence and TreeSequence implementations. Given two sequences S and T of size n and m, the cost bounds in ArraySequence for the above functions are:

Function	Work	Span
map	$\sum_{e \in S} \mathcal{W}(f(e))$	$\max _{e \in S} \mathcal{S}(f(e))$
reduce	$O(n)+\sum_{f(x, y) \in \mathcal{O}_{r}(f, b, s)} \mathcal{W}(f(x, y))$	$O\left(\log n_{f(x, y) \in \mathcal{O}_{r}(f, b, s)} \mathcal{S}(f(x, y))\right)$
empty	$O(1)$	$O(1)$
singleton	$O(1)$	$O(1)$
append	$O(n+m)$	$O(1)$
length	$O(1)$	$O(1)$
filter	$\sum_{e \in S} \mathcal{W}(p(e))$	$O(\log n)+\max _{e \in S} \mathcal{S}(p(e))$

TreeSequence has identical bounds except append has $O(\log (n+m))$ work and span, and the span of map is $\log n$ plus the max term.

Solution 4.0 ArraySequence: $W(n) \in O(n \log n), S(n) \in O(\log n)$
TreeSequence: $W(n) \in O(n), S(n) \in O\left(\log ^{2} n\right)$

