
Recitation 3 – More Recurrences and Scan

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2014)

January 28th, 2014

1 Announcements

• Lab 2 – SkylineLab has been released and is due next Monday, February 3rd. This lab is
conceptually much more difficult than the previous one, so start early!

• Questions from lecture or homework?

2 Recurrences

Let’s first get some more practice with recurrences.

2.1 Example 1

f (n) = f (n/4) +Θ(lg2 n)

2.1.1 Brick Method.

At level i:

Problem Size n/4i

Node Cost ≤ k1 lg2(n/4i) + k2

Number of Nodes 1

++++++++++++++++++
+++++++++++++++++
++++++++++++++++
+++++++++++++++
++++++++++++++

...

This may look root-dominated: the level costs get smaller as we go down the tree. However, they
don’t get smaller by a constant factor, since the 1/4i is inside a logarithm. Thus, we are in a balanced
situation and f (n) is O(d · lg2 n) = O(lg3 n).
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2.1.2 Tree Method.

From the chart above, we get this not-so-friendly looking summation:

f (n) = k1

lg n
∑

i=0

(lg2(n/4i)) + k2 lg n

f (n) = k1

lg n
∑

i=0

(lg n− lg4i)2+ k2 lg n

Solving this summation exactly seems daunting, but we can make some headway using asymptotic
approximations. 1 The second term, k2 lg n, is clearly lower-order and so we can drop it. The
highest-order term of the summand is going to be O(lg2 n), since lg4i is a constant with respect to
n. Since we are summing lg n terms, each on the order of lg2 n, we can guess that the result will be
Θ(lg3 n). This doesn’t seem sufficiently formal, so a good thing to do is check ourselves using the
substitution method, now that we have a guess.

2.1.3 Substitution Method.

We will show that the solution to the recurrence is O(lg3 n). To do this, we wish to prove that there
exist k1, k2 such that for all n> 1,

f (n)≤ k1 lg3 n+ k2

Base Case: From the definition of Θ, we know that there exists c1 > 0 such that f (1) ≤ c1. This
proves the base case of our theorem as long as c1 ≤ k2. Let’s remember that so we can choose an
appropriate k2.

Inductive Case: We know there exists c2 > 0 such that

f (n)≤ f (n/4) + c2 lg2 n

Apply the induction hypothesis.

f (n)≤ k1 lg3(n/4) + k2+ c2 lg2 n

= k1(lg
3 n− 3 lg 4 lg2 n+ 3 lg2 4 lg n− lg3 4) + k2+ c2 lg2 n

We rearrange this suggestively.

f (n)≤ k1 lg3 n+ k2+ k1(−3 lg 4 lg2 n+ 3 lg2 4 lg n− lg3 4) + c2 lg2 n

We are done as long as

k1(−3 lg 4 lg2 n+ 3 lg2 4 lg n− lg3 4) + c2 lg2 n≤ 0

1If this seems a lot like the brick method, it is. The brick method is essentially a useful shortcut to the tree method that
allows us to gain intuitive understanding of the behavior of the recurrence without explicitly solving the summation.
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We need to find k1 that makes this true, so let’s solve the above for k1.

k1 ≥
c2 lg2 n

3 lg 4 lg2 n− 3 lg2 4 lg n+ lg3 4

=
c2

3 lg 4− 3 lg2 4 lg−1 n+ lg3 4 lg−2 n

We can satisfy these constraints by setting k1 = c2 and k2 = c1.

Thus, the recurrence is O(lg3 n). Indeed, it is also Θ(lg3 n). We could show this by flipping around
the theorem for the substitution method and proving that it is Ω(lg3 n).

2.2 Example 2

f (n) = 2 f (
p

n) +Θ(1)

This is somewhat harder than the recurrences we’ve solved before, but let’s give it a try. Note that 1
won’t work as a base case here (why?), so we assume f (2) ∈Θ(1) as the base case.

2.2.1 Brick Method.

This time, we can just draw the tree since it’s a familiar one:

+
++
++++

++++++++
++++++++++++++++

....

The cost is dominated by the leaves, since the node cost is constant but the number of nodes grows
exponentially. Thus, f (n) is O(costd) = O(2d), where d is the number of levels in the tree.

But, how many levels are there? This is equivalent to asking how many times you can take the square
root of a number before you get to 2.

n1/2i
= 2

That’s a messy exponent, so let’s keep taking logs and hope it gets better.

1/2i lg n= lg2

i lg 1/2+ lg lg n= lg lg2

Noting that lg 1/2=−1 and lg lg 2= 0, this gives

i = lg lg n

So, d ≈ lg lg n, and f (n) ∈ O(2lg lg n) = O(lg n).
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2.2.2 Tree Method.

At level i:

Problem Size n1/2i

Node Cost ≤ k
Number of Nodes 2i

Given the chart and our calculation of d, we can fairly easily get the summation

f (n) = k
lg lg n
∑

i=0

2i

f (n) = k(2lg lg n+1− 1)

f (n) = k(2 · 2lg lg n− 1)

f (n) = k(2 lg n− 1) ∈ O(lg n)

2.2.3 Substitution Method.

We want to show that there exist k1, k2 such that

f (n)≤ k1 lg n+ k2

Base Case: We know f (2)≤ c1 for some c1, so we need c1 ≤ k1 lg 2+ k2 = k1+ k2.

Inductive Case: Apply the inductive hypothesis to our assumption.

f (n)≤ 2(k1 lg
p

n+ k2) + c2

f (n)≤ 2(
k1

2
lg n+ k2) + c2

f (n)≤ k1 lg n+ 2k2+ c2

This works exactly if we set k2 =−c2. Does that work with our constraint from the base case?

c1 ≤ k1− c2

k1 ≥ c1+ c2

We can satisfy this constraint by setting k1 = c1+ c2, so this completes the proof.

Again, we have shown only that the recurrence is O(lg n). We leave as an exercise the other direction
required to show Θ(lg n).
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3 Scan

Yesterday, we covered the function scan. We’ll recap the definition of scan briefly today, and show
you how to solve interesting problems with it.

scan takes a function as one of its arguments. All of the text below makes the assumption that this
function is associative. Recall the mathematical definition that a function f is said to be associative if
and only if

∀a∀b∀c. f ( f (a, b), c) = f (a, f (b, c))

We also make the assumption that the initial value is a left-identity of the functional argument. Recall
the mathematical definition that I is a left-identity of f if and only if

∀a. f (I , a) = a

We don’t need these assumptions in general, and we’ll come back to a version of scan later that
doesn’t have them, but it’s a cleaner way to start thinking about scan with these properties.

With the assumption that f is associative, (scan f b) is logically equivalent to (iterh f b) in
the same way that (reduce f b) is logically equivalent to (iter f b), but these functions differ
in their span. Specifically, if f is a function that takes no more than a constant number of steps on
all input, (iterh f) and (iter f) have both work and span in O(n), whereas reduce and scan
both have work in O(n) and span in O(lg n).

It’s worth noting that while reduce and scan are highly parallel, unlike iter and iterh, they pay
the price by having slightly less general types.

3.1 Note on Terminology

If f is a function and I is a relevant identity for f , we’ll often say “ f -scan” to mean scan f I For
example, a “+-scan” is scan (op +) 0

3.2 Recap

If s = 〈1,6, 3,−2,9, 0,−4〉, then

(scan Int.min Int.maxInt s) yields the following:

(〈Int.maxInt, 1, 1, 1,−2,−2,−2〉,−4)

Remember that in the result, location i stores the “sum” of the values at locations before i in the
original sequence. There is a variant of scan called scanI which sums the values at locations before
and including i.
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3.3 Example Uses of Scan

At first glance, scan seems to offer not much that isn’t already available through reduce. With
clever choices of associative functions, though, scan can be used to compute some surprising things
efficiently in parallel.

3.3.1 Histogram

Consider the following problem:

Given a histogram, if we were to pour water over it, how much water (in terms of area) would it hold?
For simplicity we will represent a histogram as a sequence of non-negative integers. For example the
histogram shown below is represenented by the sequence s = 〈2, 3, 4, 7, 5, 2, 3, 2, 6, 4, 3, 5, 2, 1〉, and
holds 15 units of water.

Any ideas on how we might solve this problem?

The idea is to single out one bar bi. If we know the maximum of the bar heights to the left of bi
(maxl) and the maximum of the bar heights to the right of bi (maxr), given that maxl > height(bi)
and maxr > height(bi) then the water bi will hold above it is min(maxl ,maxr)− height(bi).

When confronted with a problem like this, a good technique is to divide up the problem into smaller
subproblems, each of which can be easily solved with scan, map and/or reduce. Here’s one way to
divide it up, which directly follows the text in the previous paragraph.

1. For each bar bi , calculate maxl and maxr .

2. For each bar bi, let wi = min(maxl ,maxr) − height(bi) if maxl > height(bi) and maxr >

height(bi), or wi = 0 otherwise.

3. Sum all of the wi .

Step 3 can be done with a reduce, and steps 1 and 2 can be done for each bi in parallel, but
separately calculating, for example, maxr for bi and bi+1 will redo a lot of work, since these two bars
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share many of the same bars to their right. How can we complete steps 1 and 2 in parallel without
duplicating work? Let’s rearrange the above list slightly.

1. Calculate maxl for each bi .

2. Calculate maxr for each bi .

3. For each bi , find hi =min(maxl ,maxr).

4. For each bi , let wi =max(hi − bi , 0).

5. Sum all of the wi .

Note that we have split the previous step 2 into 2 steps, 3 and 4. This is starting to look more
tractable. Let’s take each step, assuming hist is a sequence of integers representing the histogram.

1. We’ve more or less already seen how to do this with scan. We just change the code above to
use Int.max instead of Int.min:

val (lHeights, _) = scan Int.max 0 hist

2. This is similar to step 1, except we want to take the max of all of the values to the right. We
can still use scan for this, we just want to do a scan on the reversed list. Let’s assume we have
a function rev that reverses a sequence:

val (rHeightsRev, _) = scan Int.max 0 (rev hist)

3. The phrase “for each” should imply that a map is in order. But we want to map over two
sequences, lHeights and rev rHeightsRev (note that we need to reverse rHeightsRev
again since it was generated by a scan over a reversed sequence.) For this, we can use map2:

val heights = map2 Int.min lHeights (rev rHeightsRev)

4. We define a function nonNegative as follows:

fun nonNegative (maxHeight, thisHeight) =
Int.max (maxHeight - thisHeight, 0)

Step 4 can then be accomplished by mapping this function over heights and the original
histogram:

map2 nonNegative heights hist

5. Finally, we do a reduce to add all of these heights:

reduce op+ 0 (map2 nonNegative heights hist)
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Defining rev and putting it all together gives us the complete SML code for the histogram filling
problem:

fun rev s =
let val n = length s
in tabulate (fn i => nth s (n - i - 1)) n
end

fun histogramFill (hist : int seq) =
let

val (lHeights, _) = scan Int.max 0 hist
val (rHeightsRev, _) = scan Int.max 0 (rev hist)
val heights = map2 Int.min lHeights (rev rHeightsRev)

fun nonNegative (maxHeight, thisHeight) =
Int.max (maxHeight - thisHeight, 0)

in
reduce op+ 0 (map2 nonNegative heights hist)

end

3.3.2 Matching Parentheses

We can use scan to solve the parenthesis matching problem that we went over two weeks ago. The
idea is that we first map each open parenthesis to 1 and each close parenthesis to −1. We then do a
+-scan on this integer sequence. The elements in the sequence returned by scan exactly correspond
how many unmatched parentheses there are in that prefix of the string. This is very much like
the sequential algorithm we looked at in recitation, but scan lets us parallelize it! Recall that the
parentheses are matched if and only if the counter never goes negative and is 0 at the end. We can
check the first condition using a reduce over the sequence returned by scan, and the second by
simply looking at the final value returned by scan.

For example:
〈(, ), (, (, ), ), )〉

becomes
〈1,−1, 1,1,−1,−1,−1〉

and then +-scan gives
(〈0,1, 0,1, 2,1, 0〉 ,−1)

and then fails, because the counter went negative at some point indicating an imbalance. The SML
code for the parenthesis matching problem using scan is as follows:

fun match s =
let

fun paren2int OPAREN = 1
| paren2int CPAREN = ~1
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val C = map paren2int s
val (S,total) = scan (op+) 0 C
val SOME(maxint) = Int.maxInt

in
(reduce Int.min maxint S) >= 0 andalso total = 0

end
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