
Recitation 1 – SML Module Language and Sequences

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2014)

January 14th, 2014

1 Welcome to 15-210!

• Lab 0 – MiniLab, has been released! It is due next Monday, January 20th. It’s “something light
to get you started”, and shouldn’t take too long. You’ll get practice implementing and using our
SEQUENCE library, and do a few Big-O proofs.

• In this class, we will be using SML as our default programming language, which you should be
familiar with if you have taken 15-150 previously. For those who haven’t (graduate students,
for example), or if you need a bit of a refresher, we will be holding a crash course this week
(see Piazza for updates).

2 Administrivia

Q: Where will the labs be posted?

A: We will be distributing the assignments for this course through Autolab (https://autolab.cs.
cmu.edu/). You will also be submitting your assignments on Autolab.

Q: When will the labs be posted / when will they be due?

A: Labs usually go out on Mondays, and are due the following Monday by 11:59pm, with several
exceptions. See the course schedule for updates.

Q: When are office hours?

A: Office Hours will be posted on the course webpage (http://www.cs.cmu.edu/~15210/staff.
html). These times are subject to change. If you have time conflicts and cannot attend any of the
listed office hours, please contact one of the course staff.

3 Plan

• The SML Module Language: Structures, Signatures, and Functors

• Sequence Cost Bounds

https://autolab.cs.cmu.edu/
https://autolab.cs.cmu.edu/
http://www.cs.cmu.edu/~15210/staff.html
http://www.cs.cmu.edu/~15210/staff.html
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4 The SML Module Language

As you may have seen in 15-150, SML has a module language that includes structures, signatures,
and functors. These concepts work together to make it the flexible functional programming platform
it is today. Let’s go over these quickly to make sure you understand how they work, as every lab in
15-210 will make use of them.

4.1 Structures

A structure is essentially a named packaging of functions and values, that are usually related either
semantically or functionally (hah!) in some way. A structure is a single struct and end block,
within which contains the necessary function implementations.

Consider the structure YumPancakes that encapsulates functions that are needed by Nikki’s Cafe to
serve pancakes to its customers. We denote a pancake by its weight, a real, and implement a pile
of pancakes using the 210 SEQUENCE library.

Let’s say that we have a file YumPancakes.sml containing the following structure:

structure YumPancakes =
struct

open Seq

type pancake = real (* Pancake weights *)
type pile = pancake seq

fun remFrmBk (S : 'a seq) : 'a option =
if length S = 0
then NONE
else SOME (drop (S, 1), nth S 0)

fun serveTop (P : pile) : pancake option =
case remFrmBk P of

NONE => NONE
| SOME (_, p) => SOME p

fun serveBottom (P : pile) : pancake option =
case remFrmBk P of

NONE => NONE
| SOME (P', p) => if length P' = 0

then SOME p
else serveBottom P'

end

To use this structure outside of its file (assuming we have SML/NJ’s compilation manager CM1 all set
up), we can just, for example, say YumPancakes.serveBottom P, where P is a preexisting value
of type pile.

1http://www.cs.cmu.edu/~15210/resources/cm.pdf
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Q: What’s wrong with this?

A: Clearly remFrmBk is an operation on stacks: what if we want to make use of the many different
ways that stacks can be implemented? This would both remove the dependency on the SEQUENCE
library, as well as allow for potentially more efficient implementations.

Q: What can we do instead then?

A: This is where signatures and functors come in.

4.2 Signatures

A signature is a specification of types and functions for structure(s) that implement it, with declara-
tions between a sig and end block. We say that a structure ascribes to that signature.

Q: Have you seen something similar in imperative languages?

A: This is similar to the concept of an interface for foo in foo.h, implemented by its implementation
in foo.c in the imperative world.

When a structure ascribes to a signature, every function and value declared in the signature must
be implemented by the structure. In addition, when using the structure outside of its file, only the
functions exposed by the signature can be used; any functions declared solely within the structure
have scope limited in such a way (kind of like public versus private functions in a language like Java).

Now let’s begin generalizing the YumPancakes structure by creating a PANCAKES signature in the
file PANCAKES.sig. Note that the convention is to name a structure with a leading capital letter, and
a signature in all caps.

signature PANCAKES =
sig

type pancake
type pile

val serveTop : pile -> pancake option
val serveBottom : pile -> pancake option

end

Q: Why are we returning pancake options?

A: Return NONE if we have an empty pile, SOME p otherwise.

Now our YumPancakes structure can ascribe to the PANCAKES signature:

structure YumPancakes : PANCAKES =
struct

...
(* Same as above *)
...

end
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Q: Why don’t we define our types in PANCAKES?

A: We don’t use the Seq.seq type anywhere in the signature, so that we are free from the SEQUENCE
library.

Q: Why isn’t remFrmBk part of the signature?

A: We are refactoring the data structure operation out of the interface, since it has nothing to do
with a pile of pancakes.

Great! Now how do we implement YumPancakes using a stack? What a great segue into functors!

4.3 Functors

The last (but certainly not least!) part of the SML module language are functors. A functor creates
a structure, given a structure. In other words, when provided a structure that ascribes to a specific
signature, a functor returns an entire structure, that also ascribes to some signature. Because of what
it does, a functor is also simply a struct ... end block.

Think of a functor as an awesome structure factory; when given differently-implemented structures
that ascribe to the same signature, it spits out perfectly-typed structures that perform the same duties,
just in different ways (this is of course assuming the functor typechecks!).

Back to our running example of pancakes,

Q: What structure can we pass into the functor that we’re about to write?

A: A structure called Stack that ascribes to the signature STACK.

Q: What functions do we absolutely need in STACK? (assume simplicity)

A: size, push and pop. Maybe even empty and singleton, but we’ll wing those this time.

signature STACK =
sig

type 'a stack

val size : 'a stack -> int
val push : 'a stack * 'a -> 'a stack
val pop : 'a stack -> ('a stack * 'a) option

end

This is a polymorphic, abstract data structure that lets us create stacks of any type 'a. This is of course
a very simplistic interface, but good enough for this illustration.

In the 15-210 labs, we maintain a convention that any module prefixed with “Mk” (“make”) is a
functor, anything in capitals is a signature, and anything else is a structure. Usually, the functor
MkFooBar produces the structure FooBar that ascribes to the signature FOO_BAR.
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Q: Aside: Make sense of BARESEQUENCE, PARTIALSEQUENCE, SEQFUN, BareArraySequence,
MkPartialArraySequence and MkSeqFun.

A: These are the modules in MiniLab. BareArraySequence ascribes to BARESEQUENCE, and is
passed into MkPartialArraySequencewhich returns a structure that ascribes to PARTIALSEQUENCE.
MkSeqFun takes in a structure that ascribes to PARTIALSEQUENCE and returns a structure that as-
cribes to SEQFUN.

Let’s now convert YumPancakes into a functor MkPancakes in MkPancakes.sml. This functor
takes as input a structure that ascribes to STACK, and returns a structure that ascribes to PANCAKES.

functor MkPancakes (structure Stack : STACK) : PANCAKES =
struct

open Stack

type pancake = real (* Pancake weights *)
type pile = pancake stack

fun serveTop P =
case pop P of

NONE => NONE
| SOME (_, p) => SOME p

fun serveBottom P =
case pop P of

NONE => NONE
| SOME (P', p) => if size P' = 0

then SOME p
else serveBottom P'

end

Notice that now all operations are in terms of the input Stack structure, and a pile is now simply a
pancake stack.

Q: Aside: If in the future we decide to represent a pancake by its unique color (or . . .name?),
what can we do?

A: We can just create a separate functor MkColorPancakes that accepts and ascribes to the same
signatures, and just change the type pancake to something like string.
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Now let’s implement a structure SeqStack that implements our STACK signature using sequences:

structure SeqStack : STACK =
struct

type 'a stack = 'a Seq.seq

val size = Seq.length (* Note the currying *)

fun push (S, e) =
Seq.append (Seq.singleton e, S)

fun pop S =
if size S = 0
then NONE
else SOME (Seq.drop (S, 1), Seq.nth S 0)

end

Note that just as MkPancakes has nothing to do with the implementation of its Stack argument,
SeqStack clearly has no reference to pancakes. This unambiguous separation of abstract data type
and implementation is what makes the SML module language so powerful!

Q: What if we don’t want to implement STACK using sequences?

A: This is the whole purpose of using a functor in the first place! Say we want to implement STACK
using lists. We simply create another structure we’re calling (surprise, surprise) ListStack.

structure ListStack : STACK =
struct

type 'a stack = 'a list

val size = List.length (* Note the currying *)

fun push (S, e) = e::S

fun pop nil = NONE
| pop (e::S) = SOME (S, e)

end

What’s interesting here is that the code for ListStack is much more concise than that of SeqStack.
Furthermore,

Q: What’s the work of Seq.append (S, T)?

A: O(|S|+ |T |) according to our docs2

Q: What’s the work of List :: (cons)?

A: O(1)

2http://www.cs.cmu.edu/~15210/docs/cost/ArraySequence.html
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Q: How about the span for both?

A: O(1) for both; no difference.

Q: So what’s another benefit of using ListStack?

A: ListStack.push is not only more concise, but also more efficient.

4.4 Putting this all together

We can now finally put our functor (structure factory) to work:

structure SeqPancakes = MkPancakes (structure Stack =
SeqStack)

structure ListPancakes = MkPancakes (structure Stack =
ListStack)

Calling SeqPancakes.serveBottom and ListPancakes.serveBottom will result in logically
equivalent results. That is to say, if passed the same pile value, they will both evaluate to the
same value. The equivalence between SeqPancakes and ListPancakes holds true not just for
serveBottom, but for any function exposed by the PANCAKES signature, which both structures
ascribe to.

Note that this equivalence only holds because both SeqStack and ListStack implement stacks
correctly. The STACK signature enforces the existence and types of functions in structures that
ascribe to it, but not the correctness of their implementations. Consider what would happen if
ListStack.pop was implemented as follows:

fun pop nil = NONE
| pop e::S = NONE

Constructing ListPancakes with a functor as above would still work (type-check), but the resulting
structure wouldn’t serve pancakes as expected anymore! Modularization is very useful, but bear
in mind that a module system that type-checks doesn’t ensure the correctness of the implemented
program.
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5 Analyzing SEQUENCE Cost Bounds

A very important skill in this course is to be able to quickly and accurately determine the cost of
a function by looking at its SML code or pseudocode. This is especially true when the function is
implemented using our library functions.

Let’s practice with some SEQUENCE functions; this will come in handy when you do MiniLab. Let S
and T be some sequences, and n= |S|, m= |T |.

val a = map Int.toString S
(* Work: O(n) *)
(* Span: O(1) *)

fun doStuff ((a,b),(c,d)) =
(Int.min(a,c), Int.max(b,d))

val b = reduce doStuff (0,0) (zip S T)
(* Work: O(min(n,m)) *)
(* Span: O(log(min(n,m))) *)

(* assume someSortedList contains >= 1 elements *)
val first = nth someSortedList 0
val c = iter (fn ((a, S), b) => if a = b then (a, S)

else (b, append(S, singleton b)))
(first , singleton first)
someSortedList

(* Work: O(n^2) *)
(* Span: O(n) *)

val d = map (fn x => map (tabulate (op ~))
(append (x, %[1,2,3]))) S

(* Work: O(n + sum of all elements in list) *)
(* Span: O(1) *)

fun perms S =
case length S of

(0 | 1) => singleton S
| _ =>

let
fun perms ' (i, _) =

map (fn S' => append(singleton(nth S i), S '))
(perms(append(take(S,i), drop(S,i+1))))

in
flatten (mapIdx perms ' S)

end
val e = perms S

(* Work: O(n^(n+2)) *) (* Span: O(??) *)

8


	Welcome to 15-210!
	Administrivia
	Plan
	The SML Module Language
	Structures
	Signatures
	Functors
	Putting this all together

	Analyzing SEQUENCE Cost Bounds

