
Chapter 8

Randomized Algorithms

The theme of this chapter is randomized algorithms. These are algorithms that make use of
randomness in their computation. You might know of quickSort, which is efficient on average
when it uses a random pivot, but can be bad for any pivot that is selected without randomness.

Analyzing randomized algorithms can be difficult, so you might wonder why randomization
in algorithms is so important and worth the extra effort. Well it turns out that for certain problems
randomized algorithms are simpler or faster than algorithms that do not use randomness. The
problem of primality testing (PT), which is to determine if an integer is prime, is a good example.
In the late 70s Miller and Rabin developed a famous and simple randomized algorithm for the
problem that only requires polynomial work. For over 20 years it was not known whether the
problem could be solved in polynomial work without randomization. Eventually a polynomial
time algorithm was developed, but it is much more complicated and computationally more costly
than the randomized version. Hence in practice everyone still uses the randomized version.

There are many other problems in which a randomized solution is simpler or cheaper than
the best non-randomized solution. In this chapter, after covering the prerequisite background, we
will consider some such problems. The first we will consider is the following simple problem:

Question: How many comparisons do we need to find the top two largest numbers
in a sequence of n distinct numbers?

Without the help of randomization, there is a naïve algorithm for finding the top two largest
numbers in a sequence that requires about 2n− 3 comparisons and there is a divide-and-conquer
solution that needs about 3n/2 comparisons (can be implemented with reduce). With the aid of
randomization, there is a simple randomized algorithm that uses only n− 1 + 2 lnn comparisons
on average, under some notion of averaging. In probability speak, this is n − 1 + 2 lnn
comparisons in expectation.

In this chapter we will then look at two other algorithms: one for finding the kth smallest
element in a sequences, and the other is quickSort. In future chapters we will cover many other
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algorithms. It turns out that randomized algorithms seem to play an even more important role in
parallel algorithms than in sequential algorithms.

8.1 Discrete Probability: Let’s Toss Some Dice

Not surprisingly analyzing randomized algorithms requires some understanding of probability.
There are two types of bounds on costs (work and span) that we will find useful: expected
bounds, and high probability bounds. Expected bounds basically tell us about the average case
across all random numbers (or other source of randomness) used in the algorithm. For example
if an algorithm does O(n) expected work, it means that on average across all random number
selections, the algorithm does O(n) work. Once it a while, the work could be much larger, for
example once in every n tries the algorithm might require O(n2) work.

Exercise 8.1. Explain why if an algorithm has Θ(n) expected (average) work it cannot
be the case that once in every n or so tries the algorithm requires Θ(n3)?

High probability bounds on the other hand tell us that it is quite unlikely that the cost would
be above the bounds. Typically the probability is stated in terms of n. For example me might
determine that an algorithm does O(n) work with probability at least 1 − 1/n5. This means
that only once in about n5 tries will it take more than O(n) work. High probability bounds are
stronger, especially in conjunction with expectation bounds, but they can be harder to prove.

The reason that it is often easy to work with expected bounds is that if there are a bunch
of components of an algorithm or task which we are putting together we can add the expected
cost of each together to get an overall expectation of the sum of costs. For example, if we have
100 students and they each take on average 2 hours to finish a task, then the total time spent on
average across all students will be 200 hours. This makes analysis reasonably easy since it is
compositional. Indeed many textbooks that cover randomized algorithms only cover expected
bounds since it makes analysis easy. Unfortunately such composition does not work when taking
a maximum. Again if we had 100 students starting at the same time and they take 2 hours on
average, we cannot say that the average maximum time across students is 2 hours. It could
be that typically one student gets hung up and takes 100 hours and the rest 1 hour. We can
assume it is a different student each time, so the average for each student is still at most 2 hours.
In this case, however the expected maximum time is 100 hours, instead of 2 hours. Since in
parallel algorithms we often care about maximum when calculating the span, using expectations
is sometimes not as useful as it is for sequential algorithms. In this book we often alalyze work
using expectation, but analyze span using high probability.

We now describe more formally the probability we require for analyzing randomized algo-
rithms. We begin with an example. Suppose we have two fair dice, meaning that each is equally
likely to land on any of its six sides. If we toss the dice, what is the chance that their numbers
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sum to 4? You can probably figure out that the answer is
# of outcomes that sum to 4
# of total possible outcomes

=
3

36
=

1

12

since there are three ways the dice could sum to 4 (1 and 3, 2 and 2, and 3 and 1), out of the
6×6 = 36 total possibilities. Such throwing of dice is called a probabilistic experiment since it is
an “experiment” (we can repeat it many time) and the outcome is probabilistic (each experiment
might lead to a different outcome).

Probability is really about counting, or possibly weighted counting. In the dice example we
had 36 possibilities and and a subset (4 of them) had the property we wanted. We assumed the
dice were unbiased so all possibilities are equally likely. Indeed in general it is useful to consider
all possible outcomes and then count how many of the outcomes match our criteria, or perhaps
take averages over the outcomes of some property (e.g. the average product of the two dice is
121

4
). If not all outcomes are equally likely, then the sum has to be weighted by the probability

of each outcome. For this purpose we define the notion of a sample space (the set of all possible
outcomes), primitive events (each possible outcome), events (subsets of outcomes that satisfy a
property), probability functions (defining the probability for each primitive event), and random
variables (functions from the sample space to the real numbers indicating some property of the
outcomes).

A sample space Ω is an arbitrary and possibly infinite (but countable) set of possible outcomes
of a probabilistic experiment. In our dice tossing example the Ω is the set of 36 possible outcomes
of tossing the two dice: {(1, 1), (1, 2), . . . , (2, 1), . . . , (6, 6)}. Often in analyzing algorithms
we are not tossing dice, but instead using random numbers. In this case the sample space is
all possible outcomes of the random numbers used. In the next section we analyze finding the
top two lagerst elements in a sequence, by using as our sample space all permutations of the
sequence.

A primitive event (or sample point) of a sample space Ω is any one of its elements, i.e. any
one of the outcomes of the random experiment. For example it could be the dice toss (1, 4). An
event is any subset of Ω and typically represents some property common to multiple primitive
events. For example an event could be “the first dice is 3” which would correspond to the
set {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}, or it could be “the dice sum to 4”, which would
correspond to the set {(1, 3), (2, 2), (3, 1)}.

A probability function Pr : Ω→ [0, 1] is associated with the sample space with the condition
that

∑
e∈Ω Pr [e] = 1 (i.e. the probabilities of the outcomes of a probabilistic experiment sum to

1, as we would expect). The probability of an event A is simply the sum of the probabilities of
its primitive events: Pr [A] =

∑
e∈A Pr [e]. For example in tossing two dice, the probability of

the event “the first dice is 3” is 6
36

= 1
6
, and the probability of the event “the dice sum to 4” is

3
36

= 1
12

(as above). With fair dice all probabilities are equal so all we have to do is figure out the
size of each set and divide it by |Ω|. In general this might not be the case. We will use (Ω,Pr) to
indicate the sample space along with its probability function.

A random variable X on a sample space Ω is a real-valued function on Ω, thus having type
X : Ω→ R, i.e., it assigns a real number to each primitive event. For a sample space there can
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be many random variables each keeping track of some quantity of a probabilistic experiment.
For example for the two dice example, we could have a random variable X representing the sum
of the two rolls (function X(d1, d2) = d1 + d2) or a random variable Y that is 1 if the values on
the dice are the same and 0 otherwise (function Y (d1, d2) = if (d1 = d2) then 1 else 0). This
second random variable Y is called an indicator random variable since it takes on the value 1
when some condition is true and 0 otherwise. In particular, for a predicate p : Ω → bool a
random indicator variable is defined as function Y (e) = if p(e) then 1 else 0. For a random
variableX and a number a ∈ R, the event “X = a” is the set {ω ∈ Ω | X(ω) = a}. We typically
denote random variables by capital letters from the end of the alphabet, e.g. X , Y Z.

We note that the term random variable might seem counter intuitive based on our definition
since it is actually a function not a variable, and it is not really random at all since it is a well
defined deterministic function on the sample space. The term seems to be historical from before
probability theory was formalized using sample spaces. Without the notion of a sample space,
the sum of two roles of a dice, for example, is a variable that takes on random values between
2 and 12. We could plot a probability density function with the variable on the x-axis, and the
probability on the y-axis. It would represent the probability that the “variable” takes on different
values.

Expectation. We are now ready to talk about expectation. The expectation of a random variable
X given a sample space (Ω,Pr) is the sum of the random variable over the primitive events
weighted by their probability, specifically:

E
Ω,Pr

[X] =
∑
e∈Ω

X(e) · Pr [e] .

One way to think of expectation is as the following higher order function that takes as arguments
the random variable, along with the sample space and corresponding probability function:

function E (Ω,Pr) X = reduce + 0
{
X(e)× Pr [e] : e ∈ Ω

}
We note that it is often not practical to compute expectations directly since the sample space can
be exponential in the size of the input, or even countably infinite. We therefore resort to more
clever tricks. In the notes we will most often drop the (Ω,Pr) subscript on E since it is clear
from the context.

The expectation of an indicator random variable Y is the probability that the associated
predicate p is true. This is because

E [Y ] =
∑
e∈Ω

(if p(e) then 1 else 0) · Pr [e] =
∑

e∈Ω,p(e)=true

Pr [e] = Pr [{e ∈ Ω | p(e)}] .

Independence. Two events A and B are independent if the occurrence of one does not affect
the probability of the other. This is true if and only if Pr [A ∩B] = Pr [A] · Pr [B]. For
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our dice throwing example, the events A = {(d1, d2) ∈ Ω | d1 = 1} (the first dice is 1) and
B = {(d1, d2) ∈ Ω | d2 = 1} (the second dice is 1) are independent since Pr [A] = Pr [B] = 1

6

and Pr [A ∩B] = 1
36

.

However the event C = {(d1, d2) ∈ Ω | d1 + d2 = 4} (the dice add to 4) is not independent
of A since Pr [C] = 1

12
and Pr [A ∩ C] = Pr [{(1, 3)}] = 1

36
6= Pr [A] · Pr [C] = 1

6
· 1

12
= 1

72
.

They are not independent since the fact that the first dice is 1 increases the probability they sum
to 4 (from 1

12
to 1

6
), or the other way around, the fact that they sum to 4 increases the probability

the first dice is 1 (from 1
6

to 1
3
).

When we have multiple events, we say that A1, . . . , Ak are mutually independent if and only
if for any non-empty subset I ⊆ {1, . . . , k},

Pr

[⋂
i∈I

Ai

]
=
∏
i∈I

Pr [Ai] .

Two random variables X and Y are independent if fixing the value of one does not affect
the probability distribution of the other. This is true if and only if for every a and b the
events {X ≤ a} and {Y ≤ b} are independent. In our two dice example, a random variable X
representing the value of the first dice and a random variable Y representing the value of the
second dice are independent. However X is not independent of a random variable Z representing
the sum of the values of the two dice.

Markov’s Inequality. Consider a non-negative random variable X . We can ask how much
bigger can X’s maximum value be than its expected value. With small probability it can be
arbitrarily much larger. However, since the expectation is taken by averagingX over all outcomes,
and it cannot take on negative values, X cannot take on a much larger value with significant
probability. If it did it would add too much to the sum.

Question 8.2. Can more than half the class do better than twice the average score on
the midterm?

More generally X cannot be a multiple of β larger than its expectation with probability greater
than 1/β. This is because this would contribute more than β E [X]× 1

β
= E [X] to the expectation.

This gives us the inequality:

Pr
[
X ≥ β E [X]

]
≤ 1

β

or equivalently

Pr [X ≥ α] ≤ E [X]

α

which is known as Markov’s inequality.



128 CHAPTER 8. RANDOMIZED ALGORITHMS

Linearity of Expectations

One of the most important theorem in probability is linearity of expectations. It says that given
two random variables X and Y , E [X] + E [Y ] = E [X + Y ]. If we write this out based on the
definition of expectations we get:∑

e∈Ω

Pr [e]X(e) +
∑
e∈Ω

Pr [e]Y (e) =
∑
e∈Ω

Pr [e] (X(e) + Y (e))

The algebra to show this is true is straightforward. The linearity of expectations is very powerful
often greatly simplifying analysis.

To continue our running example, let’s consider analyzing the expected sum of values when
throwing two dice. One way to calculate this is to consider all 36 possibilities and take their
average. What is this average? A much simpler way is to sum the expectation for each of the two
dice. The expectation for either dice is the average of just the six possible values 1, 2, 3, 4, 5, 6,
which is 3.5. Therefore the sum of the expectations is 7.

Note that for a binary function f the equality f(E [X] ,E [Y ]) = E [f(X, Y )] is not true in
general. For example max(E [X] ,E [Y ]) 6= E [max(X, Y )]. If it the equality held, the expected
maximum value of two rolled dice would be 3.5.

Exercise 8.3. What is the expected maximum value of throwing two dice?

We note that E [X]× E [Y ] = E [X × Y ] is true if X and Y are independent. The expected
value of the product of the values on two dice is therefore 3.5× 3.5 = 12.25.

8.2 Finding The Two Largest

The max-two problem is to find the two largest elements from a sequence of n (unique) numbers.
For inspiration, we’ll go back and look at the naïve algorithm for the problem:

1 function max2(S) = let
2 function replace((m1,m2), v) =
3 if v ≤ m2 then (m1,m2)
4 else if v ≤ m1 then (m1, v)
5 else (v,m1)

6 val start = if S1 ≥ S2 then (S1, S2) else (S2, S1)

7 in iter replace start S 〈 3, . . . , n 〉
8 end

We assume S is indexed from 1 to n. In the following analysis, we will be meticulous
about constants. The naïve algorithm requires up to 1 + 2(n− 2) = 2n− 3 comparisons since
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Example 8.4. Suppose we toss n coins, where each coin has a probability p of coming
up heads. What is the expected value of the random variable X denoting the total
number of heads?

Solution I: We’ll apply the definition of expectation directly. This will
rely on some messy algebra and useful equalities you might or might not
know, but don’t fret since this not the way we suggest you do it.

E [X] =
n∑
k=0

k · Pr [X = k]

=
n∑
k=1

k · pk(1− p)n−k
(
n

k

)
=

n∑
k=1

k · n
k

(
n− 1

k − 1

)
pk(1− p)n−k [ because

(
n

k

)
=
n

k

(
n− 1

k − 1

)
]

= n
n∑
k=1

(
n− 1

k − 1

)
pk(1− p)n−k

= n
n−1∑
j=0

(
n− 1

j

)
pj+1(1− p)n−(j+1) [ because k = j + 1 ]

= np
n−1∑
j=0

(
n− 1

j

)
pj(1− p)(n−1)−j)

= np(p+ (1− p))n [ Binomial Theorem ]
= np

That was pretty tedious :(

Solution II: We’ll use linearity of expectations. Let Xi =
I{i-th coin turns up heads}. That is, 1 if the i-th coin turns up heads and 0
otherwise. Clearly, X =

∑n
i=1 Xi. So then, by linearity of expectations,

E [X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] .

What is the probability that the i-th coin comes up heads? This is exactly
p, so E [X] = 0 · (1− p) + 1 · p = p, which means

E [X] =
n∑
i=1

E [Xi] =
n∑
i=1

p = np.
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Example 8.5. A coin has a probability p of coming up heads. What is the expected
value of Y representing the number of flips until we see a head? (The flip that comes
up heads counts too.)

Solution I: We’ll directly apply the definition of expectation:

E [Y ] =
∑
k≥1

k(1− p)k−1p

= p
∞∑
k=0

(k + 1)(1− p)k

= p · 1

p2
[ by Wolfram Alpha, though you should be able to do it.]

= 1/p

Solution II: Alternatively, we’ll write a recurrence for it. As it turns out,
we know that with probability p, we’ll get a head and we’ll be done—and
with probability 1− p, we’ll get a tail and we’ll go back to square one:

E [Y ] = p · 1 + (1− p)
(

1 + E [Y ]
)

= 1 + (1− p) E [Y ] =⇒ E [Y ] = 1/p.

by solving for E [Y ] in the above equation.
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there is one comparison to compute start each of the n − 2 replaces requires up to two
comparisons. On the surface, this may seem like the best one can do. Surprisingly, there is a
divide-and-conquer algorithm that uses only about 3n/2 comparisons (exercise to the reader).
More surprisingly still is the fact that it can be done in n+O(log n) comparisons. But how?

Puzzle: How would you solve this problem using only n+O(log n) comparisons?

A closer look at the analysis above reveals that we were pessimistic about the number of
comparisons; not all elements will get past the “if” statement in Line 3; therefore, only some of
the elements will need the comparison in Line 4. But we didn’t know how many of them, so we
analyzed it in the worst possible scenario.

Let’s try to understand what’s happening better by looking at the worst-case input. Can you
come up with an instance that yields the worst-case behavior? It is not difficult to convince
yourself that there is a sequence of length n that causes this algorithm to make 2n−3 comparisons.
In fact, the instance is simple: an increasing sequence of length n, e.g., 〈1, 2, 3, . . . , n〉. As we
go from left to right, we find a new maximum every time we counter a new element—this new
element gets compared in both Lines 3 and 4.

But perhaps it’s unlikely to get such a nice—but undesirable—structure if we consider the
elements in random order. With only 1 in n! chance, this sequence will be fully sorted. You can
work out the probability that the random order will result in a sequence that looks “approximately”
sorted, and it would not be too high. Our hopes are high that we can save a lot of comparisons in
Line 4 by considering elements in random order.

The algorithm we’ll analyze is the following. On input a sequence S of n elements:

1. Let T = permute(S, π), where π is a random permutation (i.e., we choose one of the n!
permutations).

2. Run the naïve algorithm on T .

Remarks: We don’t need to explicitly construct T . We’ll simply pick a random element which
hasn’t been considered and consider that element next until we are done looking at the whole
sequence. For the analysis, it is convenient to describe the process in terms of T .

In reality, the performance difference between the 2n− 3 algorithm and the n− 1 + 2 log n
algorithm is unlikely to be significant—unless the comparison function is super expensive. For
most cases, the 2n− 3 algorithm might in fact be faster to due better cache locality.

The point of this example is to demonstrate the power of randomness in achieving something
that otherwise seems impossible—more importantly, the analysis hints at why on a typical
“real-world” instance, the 2n− 3 algorithm does much better than what we analyzed in the worst
case (real-world instances are usually not adversarial).
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8.2.1 Analysis

After applying the random permutation we have that our sample space Ω corresponds to each
permutation. Since there are n! permutations on a sequence of length n and each has equal
probability, we have |Ω| = n! and Pr [e] = 1/n!, e ∈ Ω. However, as we will see, we do not
really need to know this, all we need to know is what fraction of the sample space obeys some
property.

Now let Xi be an indicator variable denoting whether Line 4 gets executed for this particular
value of i (i.e., Did Ti get compared in Line 4?) That is, Xi = 1 if Ti is compared in Line 4 and 0
otherwise. Recall that an indicator random variable is actually a function that maps each primitive
event (each permutation in our case) to 0 or 1. In particular given a permutation, it returns 1 iff
for that permutation the comparison on Line 4 gets executed on iteration i. Lets say we want to
now compute the total number of comparisons. We can define another random variable (function)
Y that for any permutation returns the total number of comparison the algorithm takes on that
permutation. This can be defined as:

function Y (e) = 1︸︷︷︸
Line 6

+ n− 2︸ ︷︷ ︸
Line 3

+
n∑
i=3

Xi(e)︸ ︷︷ ︸
Line 4

It is common, however, to use the shorthand notation

Y = 1 + (n− 2) +
n∑
i=3

Xi

where the argument e and function definition is implied.

We are interested in computing the expected value of Y , that is E [Y ] =
∑

e∈Ω Pr [e]Y (e).
By linearity of expectation, we have

E [Y ] = E

[
1 + (n− 2) +

n∑
i=3

Xi

]

= 1 + (n− 2) +
n∑
i=3

E [Xi] .

Our tasks therefore boils down to computing E [Xi] for i = 3, . . . , n. To compute this expectation,
we ask ourselves: What is the probability that Ti > m2? A moment’s thought shows that the
condition Ti > m2 holds exactly when Ti is either the largest element or the second largest
element in {T1, . . . , Ti}. So ultimately we’re asking: what is the probability that Ti is the largest
or the second largest element in randomly-permuted sequence of length i?

To compute this probability, we note that each element in the sequence is equally likely to be
anywhere in the permuted sequence (we chose a random permutation. In particular, if we look
at the k-th largest element, it has 1/i chance of being at Ti. (You should also try to work it out
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using a counting argument.) Therefore, the probability that Ti is the largest or the second largest
element in {T1, . . . , Ti} is 1

i
+ 1

i
= 2

i
, so

E [Xi] = 1 · 2
i

= 2/i.

Plugging this into the expression for E [Y ], we get

E [Y ] = 1 + (n− 2) +
n∑
i=3

E [Xi]

= 1 + (n− 2) +
n∑
i=3

2

i

= 1 + (n− 2) + 2
(

1
3

+ 1
4

+ . . . 1
n

)
= n− 4 + 2

(
1 + 1

2
+ 1

3
+ 1

4
+ . . . 1

n

)
= n− 4 + 2Hn,

where Hn is the n-th Harmonic number. But we know that Hn ≤ 1 + log2 n, so we get
E [Y ] ≤ n− 2 + 2 log2 n. We could also use the following sledgehammer:

As an aside, the Harmonic sum has the following nice property:

Hn = 1 +
1

2
+ · · ·+ 1

n
= lnn+ γ + εn,

where γ is the Euler-Mascheroni constant, which is approximately 0.57721 · · · , and εn ∼ 1
2n

,
which tends to 0 as n approaches∞. This shows that the summation and integral of 1/i are
almost identical (up to a small adative constant and a low-order vanishing term).

8.3 Finding The kth Smallest Element

Consider the following problem:

Problem 8.6 (The kth Smallest Element (KS)). Given an α sequence, S, an inte-
ger k, 0 ≤ k < |S|, and a comparison < defining a total ordering over α, return
(sort<(S))k, where sort is the standard sorting problem.

This problem can obviously be implemented using a sort, but this would require O(n log n)
work (we assume the comparison takes constant work). Our goal is to do better. In particular we
would like to achieve linear work, while still achieving O(log2 n) span. Here’s where the power
of randomization gives the following simple algorithm.
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1 function kthSmallest(k, S) = let
2 val p = a value from S picked uniformly at random
3 val L = 〈x ∈ S | x < p 〉
4 val R = 〈x ∈ S | x > p 〉
5 in if (k < |L|) then kthSmallest(k, L)
6 else if (k < |S| − |R|) then p
7 else kthSmallest(k − (|S| − |R|), R)

This algorithm is similar to quickSort but instead of recursing on both sides, it only recurses on
one side. Basically it figures out in which side the kth smallest must be in, and just explores that
side. When exploring the right side, R, the k needs to be adjusted by since all elements less or
equal to the pivot p are being thrown out: there are |S| − |R| such elements. The algorithm is
based on contraction.

We now analyze the work and span of this algorithm. Let Xn = max{|L|, |R|}, which is the
size of the larger side. Notice that Xn is an upper bound on the size of the side the algorithm
actually recurses into. Now since Step 3 and 4 are simply two filter calls, we have the
following recurrences:

W (n) ≤ W (Xn) + O(n)

S(n) ≤ S(Xn) + O(log n)

Let’s first look at the work recurrence. Specifically, we are interested in E [W (n)]. First, let’s
try to get a sense of what happens in expectation.

How big is E [Xn]? To understand this, let’s take a look at a pictorial representation:

RL

max(L, R)

The probability that we land on a point on the curve is 1/n, so

E [Xn] =
n−1∑
i=1

max{i, n− i} · 1
n
≤

n−1∑
j=n/2

2

n
· j ≤ 3n

4

(Recall that
∑b

i=a i = 1
2
(a+ b)(b− a+ 1).)

This computation tells us that in expectation, Xn is a constant fraction smaller than n (≤ 3n
4

),
so intuitively we should have a nice geometrically decreasing sum, which works out to O(n). It
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is not quite so simple, however, since the constant fraction is only in expectation. It could be
we are unlucky for a few contraction steps and the sequences size hardly goes down at all. How
do we deal with analyzing this. There will be other algorithms we cover when we talk about
graphs that have the same property, i.e. that the expected size goes down by a consant factor.
The following theorem shows that even if we are unlucky on some steps, the expected size will
indeed go down geometrically. Together with the linearity of expectations this will allow us to
bound the work.

Theorem 8.7. Starting with size n, the expected size of S in algorithm kthSmallest after i
recursive calls is

(
3
4

)i
n.

Proof. Let Yi be the random variable representing the size of the result after step i, and let Fi be
the random variable representing the fraction of elements that are kept on the ith step, giving
Yi = n

∏i
j=1 Fj . We have that Fi = Xn

n
, giving E [Fi] = E

[
Xn
n

]
≤ 3

4
. Now since we pick

the pivot independently on each step, the Fj are independent, allowing us to take advantage of
the fact that with independence the product of expectations of random variables is equal to the
expectation of their products. This gives:

E [Yi] = E

[
n

i∏
j=1

Fj

]
= n

i∏
j=1

E [Fj] ≤
(

3

4

)i
n

The work at each level is linear, which we can write as Wcompress(n) ≤ k1n+ k2, so we can
now bound the work by summing the work across levels, giving

E [WkthSmallest(n)] ≤
n∑
i=0

(k1n

(
3

4

)i
+ k2)

≤ k1n

(
n∑
i=0

(
3

4

)i)
+ k2n

≤ 4k1n+ k2n

∈ O(n)

Note that in the sum over steps we summed across n steps. This is because we know the algorithm
cannot run for more than n steps since each step removes at least one element, the pivot.

We now use Theorem 8.7 to bound the number of steps taken by kthSmallest to much
better than n using high probability bounds. This will allow us to bound the span of the
algorithm. Consider step i = 10 log2 n. In this case we have the expected size upper bounded by
n
(

3
4

)10 log2 n, which with a little math is the same as n× n−10 log2(4/3) ≈ n−3.15. We can now use
Markov’s inequality and observe that if the expected size is at most n−3.15 then the probability of
having size at least 1 (if less than 1 then the algorithm is done) is bounded by:

Pr
[
Y10 log2 n ≥ 1

]
≤ E[Y10 log2 n]/1 = n−3.15
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This is a high probabilty bound as discussed at the start of Section 8.1. By increasing 10 to 20
we can decrease the probability to n−7.15, which is extremely unlikely: for n = 106 this is 10−42.
We have therefore show that the number of steps is O(log n) with high probability. Each step
has span O(log n) so the overal span is O(log2 n) with high probability.

In summary, we have shown than the kthSmallest algorithm on input of size n does
O(n) work in expectation and has O(log2 n) span with high probability. As mentioned at the
start of Section 8.1 we will typically be analyzing work using expectation and span using high
probability. This is partly because we cannot compose span using expectations. We note that the
high probability bounds given here are strictly stronger than expected bounds since they imply
expected bounds.

Exercise 8.8. Show that the high probability bounds on span for kthSmallest
imply equivalent bounds in expectation.

8.4 Quicksort

You have surely seen quicksort before. The purpose of this section is to analyze quicksort in
terms of both its work and its span. In later chapters we will see that the analysis of quicksort
presented here is is effectively identical to the analysis of a certain type of balanced tree called
Treaps. It is also the same as the analysis of “unbalanced” binary search trees under random
insertion.

Quicksort is one of the earliest and most famous algorithms. It was invented and analyzed by
Tony Hoare around 1960. This was before the big-O notation was used to analyze algorithms.
Hoare invented the algorithm while an exchange student at Moscow State University while
studying probability under Kolmogorov—one of the most famous researchers in probability
theory. The analysis we will cover is different from what Hoare used in his original paper,
although we will mention how he did the analysis. It is interesting that while Quicksort is often
used as an quintessential example of a recursive algorithm, at the time, no programming language
supported recursion and Hoare spent significant space in his paper explaining how to simulate
recursion with a stack.

Consider the following implementation of quicksort. In this implementation, we intentionally
leave the pivot-choosing step unspecified because the property we are discussing holds regardless
of the choice of the pivot.
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Pseudo Code 8.9 (Quicksort 1/2).
1 function quicksort(S) =
2 if |S| = 0 then S
3 else let
4 val p = pick a pivot from S
5 val S1 = 〈 s ∈ S | s < p 〉
6 val S2 = 〈 s ∈ S | s = p 〉
7 val S3 = 〈 s ∈ S | s > p 〉
8 val (R1, R3) = (quicksort(S1) ‖ quicksort(S3) )
9 in

10 append(R1,append(S2, R3))
11 end

Question 8.10. Is there parallelism in quicksort?

There is clearly plenty of parallelism in this version quicksort.1 There is both parallelism due
to the two recursive calls and in the fact that the filters for selecting elements greater, equal, and
less than the pivot can be parallel.

Example 8.11. An example run of quicksort.

3

2

1

6

5

4

7

8

Keys

Example Run

< 7, 4, 2, 3, 5, 8, 1, 6>

< 7, 4, 5, 8, 6>< 2, 1 >

< 1 > < 7, 8 >< 5, 4>

< 4 > < 8 >

Note that each call to quicksort either makes no recursive calls (the base case) or two recursive

1This differs from Hoare’s original version which sequentially partitioned the input by the pivot using two fingers
that moved from each end and swapping two keys whenever a key was found on the left greater than the pivot and
on the right less than the pivot.
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calls. The call tree is therefore binary. We will often find it convenient to map the run of a
quicksort to a binary-search tree (BST) representing the recursive calls along with the pivots
chosen. We will sometimes refer to this tree as the call tree or pivot tree. We will use this call-tree
representation to reason about the properties of quicksort, e.g., the comparisons performed, its
span.

Example 8.12. An example call tree, which is a binary-search-tree, illustrated.
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Question 8.13. How does the pivot choice effect the costs of quicksort?

Let’s consider some strategies for picking a pivot:

• Always pick the first element: If the sequence is sorted in increasing order, then picking
the first element is the same as picking the smallest element. We end up with a lopsided
recursion tree of depth n. The total work is O(n2) since n− i keys will remain at level i
and hence we will do n− i− 1 comparisons at that level for a total of

∑n−1
i=0 (n− i− 1).

Similarly, if the sequence is sorted in decreasing order, we will end up with a recursion tree
that is lopsided in the other direction. In practice, it is not uncommon for a sort function
input to be a sequence that is already sorted or nearly sorted.

• Pick the median of three elements: Another strategy is to take the first, middle, and the
last elements and pick the median of them. For sorted lists the split is even, so each side
contains half of the original size and the depth of the tree is O(log n). Although this
strategy avoids the pitfall with sorted sequences, it is still possible to be unlucky, and in the
worst-case the costs and tree depth are the same as the first strategy. This is the strategy
used by many library implementations of quicksort. Can you think of a way to slow down
a quicksort implementation that uses this strategy by picking an adversarial input?

• Pick an element randomly: It is not immediately clear what the depth of this is, but
intuitively, when we choose a random pivot, the size of each side is not far from n/2 in
expectation. This doesn’t give us a proof but it gives us hope that this strategy will result in
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a tree of depth O(log n) in expectation. Indeed, picking a random pivot gives us expected
O(n log n) work and O(log2 n) span for quicksort and an expected O(log n)-depth tree,
as we will show.

8.5 Analysis of Quicksort, the Basics

In this lecture, we will analyze the algorithm that selects a uniformly randomly chosen key as
the pivot. For the analysis, we are going to rewrite the algorithm slightly so that we compare
each key with the pivot only once.

Pseudo Code 8.14 (Quicksort 2/2).
1 function quicksort(S) =
2 if |S| = 0 then S
3 else let
4 val p = pick a pivot from S
5 val C = 〈 (s, compare(p, s)) : s ∈ S 〉
6 val S1 = 〈 s | (s, LESS) ∈ C 〉
7 val S2 = 〈 s | (s, EQUAL) ∈ C 〉
8 val S3 = 〈 s | (s,GREATER) ∈ C 〉
9 val (R1, R3) = (quicksort(S1) ‖ quicksort(S3) )

10 in
11 append(R1,append(S2, R3))
12 end

In the analysis, for picking the pivots, we are going to use a priority-based selection technique.
Before the start of the algorithm, we’ll pick for each key a random priority uniformly at random
from the real interval [0, 1] such that each key has a unique priority. We then pick in Line 4
the key with the highest priority. Notice that once the priorities are decided, the algorithm is
completely deterministic.
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Example 8.15. Quicksort with priorities and its call tree, which is a binary-search-tree,
illustrated.

3

2

1

6

5

4

7

8

Keys

Example Run

< 7, 4, 2, 3, 5, 8, 1, 6 >

< 7, 4, 5, 8, 6>< 2, 1 >

< 1 > < 7, 8 >< 5, 4>

< 4 > < 8 >

Priorities < 0.3, 0.2, 0.7, 0.8, 0.4, 0.1, 0.5 , 0.6 >

Exercise 8.16. Convince yourself that the two presentations of randomized quicksort
are fully equivalent (modulo the technical details about how we might store the priority
values).

Before we get to the analysis, let’s observe some properties of quicksort. For these observa-
tions, it might be helpful to consider the example shown above.

Question 8.17. How many time any two keys x and y in the input are compared in a
run of the algorithm?

In quicksort, a comparison always involves a pivot and another key. Since, the pivot is never
sent to a recursive call, a key is selected as a pivot exactly once, and is not involved in further
comparisons (after is becomes a pivot). Before a key is selected a pivot, it may be compared to
other pivots, once per pivot, and thus two keys are never compared more than once.

Question 8.18. Can you tell which keys are compared by looking at just the call tree?

Following on the discussion above, a key is compared with all its ancestors in the call tree.
Or alternatively, a key is compared with all the keys in its subtree.

Question 8.19. Let x and z two keys such that x < z. Suppose that a key y is selected
as a pivot before either x or z is selected. Are x and z compared?

When the algorithm selects a key (y) in between two keys (x, z) as a pivot, it sends the two
keys to two separate subtrees. The two keys (x and z) separated in this way are never compared
again.
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Question 8.20. Suppose that the keys x and y are adjacent in the sorted order, how
many times are they compared?

Adjacent keys are compared exactly once. This is the case because there is no key that will
separate them.

Question 8.21. Would it be possible to modify quicksort so that it never compares
adjacent keys?

Adjacent keys must be compared, because otherwise it would be impossible for quicksort to
distinguish between two orders where adjacent keys are swapped.

Question 8.22. Based on these, can you bound the number of comparisons performed
by quicksort in terms of the comparisons between keys.

Obviously the total number of comparisons can be written by summing over all comparisons
involving each key. Since each key is involved in a comparison with another key at most once,
the total number of comparisons can be expressed as the sum over all pairs of keys. That is, we
can just consider each pair of key once and check whether they are ancestors/descendants or not
and add one of if so. We never have to consider each pair more than once.

8.6 Expected work for randomized quicksort

As discussed above, if we always pick the first element then the worst-case work is O(n2), for
example when the array is already sorted. The expected work, though, is O(n log n) as we will
prove below. That is, the work averaged over all possible input ordering is O(n log n). In other
words, on most input this naive version of quicksort works well on average, but can be slow on
some (common) inputs.

On the other hand, if we choose an element randomly to be the pivot, the expected worst-case
work is O(n log n). That is, for input in any order, the expected work is O(n log n): No input
has expected O(n2) work. But with a very small probability we can be unlucky, and the random
pivots result in unbalanced partitions and the work is O(n2).

We’re interested in counting how many comparisons quicksort makes. This immediately
bounds the work for the algorithm because this is where the bulk of work is done. That is, if we
let

Xn = # of comparisons quicksort makes on input of size n,

our goal is to find an upper bound on E [Xn] for any input sequence S. For this, we’ll consider
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Ti T j

pp pp
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Figure 8.1: The possible relationships between the selected pivot p, Ti and Tj illustrated.

the final sorted order2 of the keys T = sort(S). In this terminology, we’ll also denote by pi the
priority we chose for the element Ti.

We’ll derive an expression for Xn by breaking it up into a bunch of random variables and
bound them. Consider two positions i, j ∈ {1, . . . , n} in the sequence T . We use the random
indicator variables Aij to indicate whether we compare the elements Ti and Tj during the
algorithm—i.e., the variable will take on the value 1 if they are compared and 0 otherwise.

Based on the discussion in the previous section, we can write Xn by summing over all Aij’s:

Xn ≤
n∑
i=1

n∑
j=i+1

Aij

By linearity of expectation, we have

E [Xn] ≤
n∑
i=1

n∑
j=i+1

E [Aij]

Furthermore, since each Aij is an indicator random variable, E [Aij] = Pr [Aij = 1]. Our
task therefore comes down to computing the probability that Ti and Tj are compared (i.e.,
Pr [Aij = 1]) and working out the sum.

To compute this probability, let’s take a closer look at the quicksort algorithm to gather
some intuitions. Notice that the top level takes as its pivot p the element with highest priority.
Then, it splits the sequence into two parts, one with keys larger than p and the other with keys
smaller than p. For each of these parts, we run quicksort recursively; therefore, inside it,
the algorithm will pick the highest priority element as the pivot, which is then used to split the
sequence further.

For any one call to quicksort there are three possibilities (illustrated in Figure ??) for
Aij , where i < j:

• The pivot (highest priority element) is either Ti or Tj , in which case Ti and Tj are compared
and Aij = 1.

2Formally, there’s a permutation π : {1, . . . , n} → {1, . . . , n} between the positions of S and T .
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• The pivot is element between Ti and Tj , in which case Ti is in S1 and Tj is in S3 and Ti
and Tj will never be compared and Aij = 0.

• The pivot is less than Ti or greater than Tj . Then Ti and Tj are either both in S1 or both
in S3, respectively. Whether Ti and Tj are compared will be determined in some later
recursive call to quicksort.

Let us first consider the first two cases when the pivot is one of Ti, Ti+1, ..., Tj . With this
view, the following observation is not hard to see:

Claim 8.23. For i < j, Ti and Tj are compared if and only if pi or pj has the highest priority
among {pi, pi+1, . . . , pj}.

Proof. Assume first that Ti (Tj) has the highest priority. In this case, all the elements in the
subsequence Ti . . . Tj will move together in the call tree until Ti (Tj) is selected as pivot. When
it is, Ti and Tj will be compared. This proves the first half of the theorem.

For the second half, assume that Ti and Tj are compared. For the purposes of contradiction,
assume that there is a key Tk, i < k < j with a higher priority between them. In any collection of
keys that include Ti and Tj , Tk will become a pivot before either of them. Since Ti ≤ Tk ≤ Tj it
will separate Ti and Tj into different buckets, so they are never compared. This is a contradiction;
thus we conclude there is no such Tk.

Therefore, for Ti and Tj to be compared, pi or pj has to be bigger than all the priorities in
between. Since there are j − i+ 1 possible keys in between (including both i and j) and each
has equal probability of being the highest, the probability that either i or j is the greatest is
2/(j − i+ 1). Therefore,

E [Aij] = Pr [Aij = 1]

= Pr [pi or pj is the maximum among {pi, . . . , pj}]

=
2

j − i+ 1
.

Question 8.24. What does this bound tell us about the likelihood of keys being com-
pared?

The bound says that the closer two keys in the sorted order, the more likely it is that they
are compared. For example, the keys Ti is compared to Ti+1 with probability 1. It is easy to
understand why if we consider the corresponding BST. One of Ti and Ti+1 must be an ancestor
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of the other in the BST: There is no element that could be the root of a subtree that has Ti in its
left subtree and Ti+1 in its right subtree.

If we consider Ti and Ti+2 there could be such an element, namely Ti+1, which could have Ti
in its left subtree and Ti+2 in its right subtree. That is, with probability 1/3, Ti+1 has the highest
probability of the three and Ti is not compared to Ti+2, and with probability 2/3 one of Ti and
Ti+2 has the highest probability and, the two are compared.

In general, the probability of two elements being compared is inversely proportional to the
number of elements between them when sorted. The further apart the less likely they will be
compared. Analogously, the further apart the less likely one will be the ancestor of the other in
the related BST.

Hence, the expected number of comparisons made in randomized quicksort is

E [Xn] ≤
n−1∑
i=1

n∑
j=i+1

E [Aij]

=
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=
n−1∑
i=1

n
n−i+1∑
k=2

2

k

≤ 2
n−1∑
i=1

Hn

= 2nHn ∈ O(n log n)

(Recall: Hn = lnn+O(1).)

Indirectly, we have also shown that the average work for the basic deterministic quicksort
(always pick the first element) is also O(n log n). Just shuffle the data randomly and then apply
the basic quicksort algorithm. Since shuffling the input randomly results in the same input as
picking random priorities and then reordering the data so that the priorities are in decreasing
order, the basic quicksort on that shuffled input does the same operations as randomized quicksort
on the input in the original order. Thus, if we averaged over all permutations of the input the
work for the basic quicksort is O(n log n) on average.

8.6.1 An alternative method

Another way to analyze the work of quicksort is to write a recurrence for the expected work
(number of comparisons) directly. This is the approach taken by Tony Hoare in his original
paper. For simplicity we assume there are no equal keys (equal keys just reduce the cost). The
recurrence for the number of comparisons X(n) done by quicksort is then:

X(n) = X(Yn) +X(n− Yn − 1) + n− 1
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where the random variable Yn is the size of the the set S1 (we use X(n) instead of Xn to avoid
double subscrips). We can now write an equation for the expectation of X(n).

E [X(n)] = E [X(Yn) +X(n− Yn − 1) + n− 1]

= E [X(Yn)] + E [X(n− Yn − 1)] + n− 1

=
1

n

n−1∑
i=0

(E [X(i)] + E [X(n− i− 1)]) + n− 1

where the last equality arises since all positions of the pivot are equally likely, so we can just
take the average over them. This can be by guessing the answer and using substitution. It gives
the same result as our previous method. We leave this as exercise.

8.7 Expected Span of Quicksort

Recall that in randomized quicksort, at each recursive call, we partition the input sequence S
of length n into three subsequences L, E, and R, such that elements in the subsequences are
less than, equal, and greater than the pivot, respectfully. Let Mn = max{|L|, |R|}, which is
the size of larger subsequence. The span of quicksort is determined by the sizes of these larger
subsequences. For ease of analysis, we will assume that |E| = 0, as more equal elements will
only decrease the span. As this partitioning uses filter we have the following recurrence for
span:

S(n) = S(Mn) +O(log n)

Probability of splitting the input proportionately. To develop some intuition for the span
analysis, let’s consider the probability that we split the input sequence more or less evenly.

Question 8.25. What is the probability that Mn is at most 3n/4?

If we select a pivot that is greater than Tn/4 and less than T3n/4 then Mn is at most 3n/4.
Since all keys are equally likely to be selected as a pivot this probability is 3n/4−n/4

n
= 1/2. The

figure below illustrates this.

Tn/4 T 3n/4

n/2 keysn/4 keys n/4 keys

Question 8.26. What does this say about what the span of quicksort may be?
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This observations implies that at each level of the call tree (every time a new pivot is selected),
the size of the input to both calls decrease by a constant fraction (of 4/3). At every two levels,
the probability that the input size decreases by 4/3 is the probability that it decreases at either
step, which is at least 3/4, etc. Thus at a small constant number of steps, the probability that we
observe a 4/3 factor decrease in the size of the input approches 1 quickly. This suggest that at
some after c log n levels quicksort should complete. We now make this intuition more precise.

Conditioning and the total expectation theorem. For the analysis, we are going to use the
conditioning technique for computing expectations. Specifically, we will use the total expectation
theorem. Let X be a random variable and let Ai be disjoint events that form a a partition of the
sample space such that P (Ai) > 0. The total expectation theorem states that

E[X] =
n∑
i=1

P (Ai) · E[X|Ai].

Bounding Span. As we did for SmallestK, we will bound E[Sn] by considering the
Pr [Xn ≤ 3n/4] and Pr [Xn > 3n/4] and use the maximum sizes in the recurrence to upper
bound E [Sn]. Now, the Pr [Xn ≤ 3n/4] = 1/2, since half of the randomly chosen pivots results
in the larger partition to be at most 3n/4 elements: Any pivot in the range Tn/4 to T3n/4 will do,
where T is the sorted input sequence.

By conditioning Sn on the random variable Mn, we write,

E[Sn] =
n∑

m=n/2

Pr [Mn = m] · E[Sn|(Mn = m).

Now, we can write this trivially as

E[Sn] =
n∑

m=n/2

Pr [Mn = m] · E[Sm].

The rest is algebra

E[Sn] =
n∑

m=n/2

Pr [Mn = m] · E[Sm]

≤ Pr
[
Mn ≤

3n

4

]
· E[S 3n

4
] + Pr

[
Mn >

3n

4

]
· E[Sn] + c · log n

≤ 1

2
E[S 3n

4
] +

1

2
E[Sn]

=⇒ E[Sn] ≤ E[S 3n
4

] + 2c log n.

This is a recursion in E[S(·)] and solves easily to E[S(n)] = O(log2 n).


