
Chapter 17

Ordered Sets and Augmented BSTs

17.1 Ordered Sets and Tables

The set and table interfaces described so far do not give any operations that make use of the
ordering of the elements. This allows it to be defined on types that don’t have a natural ordering.
It is also well suited for an implementation based on hash tables. In many applications, however,
it is useful to take advantage of the order of the keys. For example in a database one might want
to find all the customers who spent between $50 and $100, all emails in the week of Aug 22, or
the last stock transaction before noon on October 11th. Here we assume the data is organized by
transaction value, date or any other ordered key.

For these purposes we can extend the operations on sets and tables with some additional
operations that take advantage of ordering. Abstract Data Type 17.1 defines the operations
supported by ordered sets, which simply extend the operations on sets. The operations on
ordered tables are completely analogous and extend the operations on tables. Note that split
and join are the same as the operations we defined for binary search trees, but join does not
take a middle element.

267

268 CHAPTER 17. ORDERED SETS AND AUGMENTED BSTS

Abstract Data Type 17.1 (Ordered Sets). For a totally ordered universe of elements
(U, <) (e.g. the integers or strings), the Ordered Set abstract data type is a type S
representing the powerset of U (i.e., all subsets of U) along with the following functions:
All operations supported by the Set ADT (7.2), as well as

first(S) : S→ (U ∪ {⊥}) = min S
last(S) : S→ (U ∪ {⊥}) = max S
previous(S, k) : S× U→ (U ∪ {⊥}) = max {k′ ∈ S | k′ < k}
next(S, k) : S× U→ (U ∪ {⊥}) = min {k′ ∈ S | k′ > k}
split(S, k) : S× U→ S× B× S

= ({k′ ∈ S | k′ < k} , k
?
∈ S, {k′ ∈ S | k′ > k})

join(S1, S2) : S× S→ S = S1 ∪ S2,
assuming maxS1 < minS2

getRange(S, k1, k2) : S× U× U→ S = {k ∈ S | k1 ≤ k ≤ k2}

rank(S, k) : S× U→ N = | {k′ ∈ S | k′ < k} |
select(S, i) : S× N→ (U ∪ {⊥}) = k ∈ S such that rank(S, k) = i

or ⊥ if there is no such k
splitIdx(S, i) : S× N→ S× S = ({k ∈ S | k < select(S, i)} ,

{k ∈ S | k ≥ select(S, i)})

We assume max or min of the empty set returns the special element ⊥. B indicates a
Boolean, and N indicates the natural numbers.

Example 17.2. Consider the following sequence ordered lexicographically:

S = {"artie","burt","finn","mercedes","mike","rachel","sam","tina"}

• first(S) returns SOME("artie")

• next(S, "quinn") or next(S, "mike") returns SOME("rachel")

• range(S, "blain","quinn") or range(S, "burt","mike") returns

{"burt","finn","mercedes","mike"}

• rank(S, "rachel") or rank(S, "quinn") returns the number of elements less than
“rachel” or “quinn”, which is 5 in both cases,

• select(S, 6) returns the 6th element (0 based) giving "sam", and

• splitIndex(S, 3) splits S at location 3 returning

({"artie","burt","finn"} , {"mercedes","mike","rachel","sam","tina"})

17.2. AUGMENTING BALANCED TREES 269

If we implement using trees, then we can use the tree implementations of split and join
directly. Implementing first is straightforward since it only requires traversing the tree down
the left branches until a left branch is empty. Similarly last need only traverse right branches.
The getRange operation can easily be implemented with two calls to split.

Exercise 17.3. Describe how to implement previous and next using the other
ordered set functions.

We describe how to implement rank, select and splitIndex in the next section.

Cost Specification 17.4 (Tree-based ordered sets and tables). The cost for the ordered
set and ordered table functions is the same as for tree-based sets (Cost Spec 7.11) and
tables (Cost Spec 7.24) for the operations supported by sets and tables. The work and
span for all the operations in Data Type 17.1 is O(log n), where n is the size of the input
set or table, or in the case of join it is the sum of the sizes of the two inputs.

17.2 Augmenting Balanced Trees

Often it is useful to include additional information beyond the key and associated value in a tree.
In particular the additional information can help us efficiently implement additional operations.
Here we will consider two examples: (1) locating positions within an ordered set or ordered
table, and (2) keeping “reduced” values in an ordered or unordered table.

17.2.1 Tracking Sizes and Locating Positions

We now consider how to efficiently implement the rank, select and splitIndex on a
binary search tree. In Chapter 16 the only things we stored at the nodes of a tree were the left
and right children, the key and value, and perhaps some balance information. With just this
information implementing the select and splitIdx operations requires visiting all nodes
before the ith location to count them up. There is no way to know the size of a subtree without
visiting it. Similarly rank requires visiting all nodes before k. Therefore all these operations
will take Θ(|S|) work. In fact even implementing size(S) requires Θ(|S|) work.

Question 17.5. How do we avoid visiting most of the tree to implement rank, select,
and splitIdx?

To avoid visiting all subtrees to calculate their size we can add to each node an additional field
that gives the size of the subtree.

270 CHAPTER 17. ORDERED SETS AND AUGMENTED BSTS

Algorithm 17.7 (Select).
1 function select(T, i) =
2 case expose(T) of
3 NONE ⇒ raise Range
4 | SOME(L, k,R) ⇒
5 case compare(i, |L|) of
6 Less ⇒ select(L, i)
7 | Equal ⇒ k
8 | Greater ⇒ select(R, i− |L| − 1)

9 function rank(T, k) =
10 case expose(T)
11 NONE ⇒ 0
12 | SOME(L, k′, R) ⇒
13 case compare(k, k′) of
14 Less ⇒ rank(L, k)
15 | Equal ⇒ |L|
16 | Greater ⇒ |L|+ 1+ rank(R, k)

Example 17.6. An example BST for the ordered set

S = {"artie","burt","finn","mercedes","mike","rachel","sam","tina"}

augmented with the sizes of subtrees.

rachel,8

burt,5 sam,2

artie,1 mercedes,3

mike,1

tina,1

finn,1

Storing the sizes of subtrees makes the size operation trivial, since we can just look it up at the
root. It also makes rank, select, and splitidx efficient. In particular all three operations
can be implemented in work proportional to the depth of the tree. Therefore for balanced trees
the work will be O(log |S|). The algorithms for select and rank are given in Algorithm 17.7.

The implementation of splitIdx is similar to split except when deciding which branch
to take, be base it on the sizes instead of the keys. In fact with splitIdx we don’t even need
select, we could implement it as a splitIdx followed by a first on the right tree.

17.2. AUGMENTING BALANCED TREES 271

17.2.2 Ordered Tables with Reduced Values

A second application of augmenting trees is to dynamically maintain a sum (using an arbitrary
associative operator f) over the values of a table while allowing for arbitrary updates, e.g.
insert, delete, merge, extract, split, and join. It turns out that this ability is very useful for
several applications. We will get back to the applications but first describe the interface and its
implementation using binary search trees. Consider the following abstract data type that extends
ordered tables with one additional operation.

Definition 17.8 (Ordered table with reduced value ADT). For a specified associative
function f : v × v → v and identity element If , an ordered table with reduced values
supports all operations on ordered tables, e.g.

• empty, singleton, map, filter, reduce, iter, insert, delete, find, merge, extract, erase

• split, join, first, last, previous, next, splitIdx, rank, select

and in addition supports the operation

reduceVal(A) : T→ v = reduce f If A

The reduceVal(T) function just returns the sum of all values in T using the associative
operator f that is part of the data type. It might seem redundant to support this function since
it can be implemented by the existing reduce function, but the idea is that we will be able to
implement it much more efficiently by including it in the interface. In particular our goal is to
support all the table operations in the same asymptotic bounds as we have previously used for
the binary search tree implementation of ordered tables, but also support the reduceVal in
O(1) work.

You might ask how can we possibly implement a reduce in O(1) work on a table of
arbitrary size? The trick is to make use of the fact that the function f over which we are reducing
is fixed ahead of time. This means that we can maintain the reduced value and update it whenever
we do other operations on the ordered table. That way whenever we ask for the value it has
already been computed and we only have to look it up. Using this approach the challenge is
not in computing reduceVal, it just needs to return a precomputed value, but instead how to
maintain this value whenever we do other operations on the table.

We now discuss how to maintain the reduced values on the binary search trees. The basic
idea is simply to store with every node v of a binary search tree the reduced value of its subtree
(i.e. the sum of all the values that are descendants of v as well as the value at v itself).

272 CHAPTER 17. ORDERED SETS AND AUGMENTED BSTS

Example 17.9. The following diagram shows a tree with key-value pairs on the left, and
the augmented tree on the right, where each node additionally maintains the sum (the
function f is addition) of it subtree.

e,2

c,1 g,5

a,3 d,2

e,2,13

c,1,6 g,5,5

a,3,3 d,2,2

Augment

The sum at the root (13) is the sum of all values in the tree (3 + 1 + 2 + 2 + 5). It is also
the sum of the reduced values of its two children (6 and 5) and its own value 2.

The value of each reduced value in a tree can be calculated as the sum of its two children plus
the value stored at the node. This means that we can maintain these reduced values by simply
taking this “sum” of three values whenever creating a node. In turn this means that the only real
change we have to make to existing code for implementing ordered tables with binary search
trees is to do this sum whenever we make a node. If the work of f is constant, then this sum
takes constant work at each node.

Figure 17.10 describes the implementation of join on treaps extended to work with reduced
values. In each Node the first data entry is the data stored at the node and the second is the
reduced value. The only difference in the join code from Chapter 16 is the use of makeNode
instead of Node. Similar use of makeNode can be used in split and other operations on
treaps. This idea can be used with any binary search tree, not just treaps. In all cases one needs
only to replace the function that creates a node with a version that also sums the reduced values
from the children and the value from the node to create a reduced value for the new node.

Example 17.11. The following diagram shows an example of splitting an augmented
tree.

e,2,13

b,1,6 g,5,5

a,3,3 d,2,2

Split(T, ”c”) e,2,9b,1,4

g,5,5a,3,3 d,2,2

T

The tree is split by the key c, and the reduced values on the internal nodes need to be
updated. This only needs to happen along the path that created the split, which in this
case is e, b, and d. The node for d does not have to be updated since it is a leaf. The
makeNode for e and b are what will update the reduced values for those nodes.

17.2. AUGMENTING BALANCED TREES 273

Data Structure 17.10 (Treaps with reduced values).
1 type rval % type of the reduced value
2 val f : rval × rval → rval % associative combining function
3 val If : rval % identify for the reduced value

4 datatype Treap =
5 Leaf
6 | Node of (Treap × (key × rval × rval) × Treap)

7 function reduceVal(T) =
8 case T of
9 Leaf ⇒ If

10 | Node(_,(_,_,r),_) ⇒ r

11 function makeNode(L, (k, v), R) =
12 node(L,
13 (k, v, f(reduceVal(L), f(v, reduceVal(R)))),
14 R)

15 function join(T1, T2) =
16 case(T1, T2) of
17 (Leaf, _) ⇒ T2

18 | (_, Leaf) ⇒ T1

19 | (Node(L1, (k1, v1, s1), R1),Node(L2, (k2, v2, s2), R2)) ⇒
20 if (priority(k1) > priority(k2)) then
21 makeNode(L1,(k1, v1),join(R1, T2))
22 else
23 makeNode(join(T1, L2),(k2, v2),R2)

We note that in an imperative implementation of binary search trees in which a child node
can be side affected, then the reduced values need to be recomputed on all nodes in the path from
the modified node to the root.

We now consider several applications of ordered tables with reduced values.

Example: Analyzing Profits at TRAM?LAW R©

Lets say that based on your expertise in algorithms you are hired as a consultant by the giant
retailer TRAM?LAW R©. Tramlaw sells over 10 billion items per year across its 8000+ stores. As
with all major retailers, it keeps track of every sale it makes and analyzes these sales regularly
to make business and marketing decisions. Lets say that the sale records it keeps consists of
a timestamp when the sale was made, the amount of the sale and various other information
associated with the sale.

Tramlaw wants to be able to quickly determine the total amount of sales within any range
of time, e.g. between 5pm and 10pm last Friday, or during the whole month of September, or

274 CHAPTER 17. ORDERED SETS AND AUGMENTED BSTS

during the halftime break of the last Steeler’s football game, or for the week after its latest promo.
It uses this sort of information, for example, to decide on staffing levels or marketing strategy. It
needs to maintain the database so that it can be updated quickly, including not just adding new
sales to the end, but merging in information from all its stores, and possibly modifying old data
(e.g. if some item is returned or a record is found to be in error).

How would you do this? Well after thinking a few minutes you remember ordered tables
with reduced values from 210. You realize that if you keep the sales information keyed based on
timestamps, and maintain the sum of sales amounts as the reduced values then all the operations
required are cheap. In particular the function f is simply addition. Now the following will extract
the sum in any range:

reduceVal(getRange(T, t1, t2))

This will take O(log n) work, which is much cheaper than n. Now lets say Tramlaw wanted
to do a somewhat more complicated query where they want to know the total sales between 5
and 7 pm on every day over the past year. You could do this by applying the query above once
for each day. These can all be done in parallel and summed in parallel. The total work will be
365×O(log n), which is still much cheaper than looking at all data over the past year.

Example: A Jig with QADSAN R©

Now in your next consulting job QADSAN R© hires you to more efficiently support queries on
the their stock exchange data. For each stock they keep track of the time and amount of every
trade. This data is updated as new trades are made. As with Tramlaw, tables might also need to
be merged since they might come from different sources : e.g. the Tokyo stock exchange and the
New York stock exchange. Qasdan wants to efficiently support queries that return the maximum
price of a trade during any time range (t1, t2) .

You tell them that they can use an ordered table with reduced values using max as the
combining function f . The query will be exactly the same as with your consulting jig with
Tramlaw, getRange followed by reduceVal, and it will similarly run in O(log n) work.

Exercise 17.12. Now lets say that QADSAN R© also wants to support queries that given
a time range return the maximum increase in stock value during that range (i.e. the
largest difference between two trades in which the larger amount comes after the smaller
amount). What function would you use for f to support such queries in O(log n) work.

Example: Interval Queries

After your two consulting jobs, you are taking 15-451, with Professor Mulb. On a test he asks
you to describe a data structure for representing an abstract data type called interval tables. An

17.2. AUGMENTING BALANCED TREES 275

interval is a region on the real number line starting at xl and ending at xr, and an interval table
supports the following operations on intervals:

insert(A, I) : T× (real× real)→ T insert interval I into table A
delete(A, I) : T× (real× real)→ T delete interval I from table A
count(A, x) : T× real→ int return the number of intervals crossing x in A

Exercise 17.13. How would you implement this.

Other Applications of Reduced Values

• By using the parenthesis matching code in recitation 1 we could maintain whether a
sequence of parenthesis are matched while allowing updates. Each update will take
O(log n) work. In fact we could append two strings of parenthesis and check whether
together they are matched in O(log n) work.

• By using the maximum contiguous subsequence sum problem described in class you could
maintain the sum while updating the sequence by for example inserting new elements,
deleting elements, or even merging sequences.

276 CHAPTER 17. ORDERED SETS AND AUGMENTED BSTS

.

	Ordered Sets and Augmented BSTs
	Ordered Sets and Tables
	Augmenting Balanced Trees
	Tracking Sizes and Locating Positions
	Ordered Tables with Reduced Values

