\qquad
Andrew ID: \qquad Section:

15-210: Parallel and Sequential Data Structures and Algorithms

Practice Final

May 2014

- There are 14 pages in this examination, comprising 7 questions worth a total of 110 points. The last few pages are an appendix with costs of sequence, set and table operations.
- You have 80 minutes to complete this examination.
- Please answer all questions in the space provided with the question. Clearly indicate your answers.
- You may refer to your one double-sided $8 \frac{1}{2} \times 11$ in sheet of paper with notes, but to no other person or source, during the examination.
- Your answers for this exam must be written in blue or black ink.

Circle the section YOU ATTEND

Sections

A 9:30am-10:20am Naman
B 10:30am-11:20am Sam
C 12:30pm-1:20pm Isaac
D 12:30pm-1:20pm Nikki
E $\quad 1: 30 \mathrm{pm}-2: 20 \mathrm{pm} \quad$ Esther and Ronald
F 1:30pm-2:20pm Ivan
G $\quad 3: 30 \mathrm{pm}-4: 20 \mathrm{pm} \quad$ Will and Ian
\qquad Andrew ID: \qquad

Question	Points	Score
Binary Answers	20	
Costs	12	
Short Answers	18	
Slightly Longer Answers	20	
Longest Contiguous Increasing Subsequence	16	
Median ADT	12	
Geometric Coverage	12	
Total:	110	

Question 1: Binary Answers (20 points)

Clearly mark \mathbf{T} or \mathbf{F} to the left of each question.
(a) (2 points) The expressions (Seq.reduce f I A) and (Seq.iter f I A) always return the same result as long as f is commutative.
(b) (2 points) The expressions (Seq.reduce f I A) and (Seq.reduce f I (Seq.reverse A)) always return the same result if f is associative and commutative.
(c) (2 points) Any parallel algorithm for a problem is always faster than a sequential algorithm for the same problem.
(d) (2 points) Solving recurrences with induction can be used to show both upper and lower bounds?
(e) (2 points) Let p be an odd prime. In open address hashing with a table of size p and given a hash function $h(k)$, quadratic probing uses $h(k, i)=\left(h(k)+i^{2}\right) \bmod p$ as the i th probe position for key k. If there is an empty spot in the table quadratic hashing will always find it.
(f) (2 points) scan f b L and reduce f b L always have the same asymptotic cost.
(g) (2 points) If a randomized algorithm has expected $O(n)$ work, then there exists some constant c such that the work performed is guaranteed to be at most $c n$.
(h) (2 points) The height of any binary search tree (BST) is $O(\log n)$.
(i) (2 points) Dijkstra's algorithm always terminates even if the input graph contains negative edge weights.
(j) (2 points) A $\Theta\left(n^{2}\right)$-work algorithm always takes longer to run than a $\Theta(n \log n)$-work algorithm.

Question 2: Costs (12 points)

(a) (6 points) Give tight assymptotic bounds (Θ) for the following recurrence using the tree method. Show your work.

$$
W(n)=2 W(n / 2)+n \log n
$$

(b) (6 points) Check the appropriate column for each row in the following table:

	root dominated	leaf dominated	balanced
$W(n)=2 W(n / 2)+n^{1.5}$			
$W(n)=\sqrt{n} W(\sqrt{n})+\sqrt{n}$			
$W(n)=8 W(n / 2)+n^{2}$			

Question 3: Short Answers (18 points)
Answer each of the following questions in the spaces provided.
(a) (3 points) What simple formula defines the parallelism of an algorithm (in terms of work and span)?
(b) (3 points) Name two algorithms we covered in this course that use the greedy method.
(c) (3 points) Given a sequence of key-value pairs A, what does the following code do?

```
Table.map length (Table.collect A)
```

(d) (3 points) What is the cut property of graphs that enables MST algorithms such as Kruskal's, Prim's and Borůvka's to work correctly?
(e) (3 points) What asymptotically efficient parallel algorithm/technique can one use to count the number of trees in a forest (tree and forest have their graph-theoretical meaning)? (Hint: the ancient saying of "can't see forest from the trees" may or may not be of help.) Give the work and span for your proposed algorithm.
(f) (3 points) What are the two ordering invariants of a Treap? (Describe them briefly.)

Question 4: Slightly Longer Answers (20 points)

(a) (6 points) Certain locations on a straight pathway recently built for robotics research have to be covered with a special surface, so CMU hires a contractor who can build arbitrary length segments to cover these locations (a location is covered if there is a segment covering it). The segment between a and b (inclusive) costs $(b-a)^{2}+k$, where k is a non-negative constant. Let $k \geq 0$ and $X=\left\langle x_{1}, \ldots, x_{n}\right\rangle, x_{i} \in \mathbb{R}_{+}$, be a sequence of locations that have to be covered. Give an $O\left(n^{2}\right)$-work dynamic programming solution to find the cheapest cost of covering these points (all given locations must be covered). Be sure to state the subproblems and give a recurrence, including the base case(s).
(b) (7 points) Consider the following variant of the optimal binary search tree (OBST) algorithm given in class:

```
function \(\operatorname{OBST}(A)=\) let
    function \(O B S T^{\prime}(S, d)=\)
        if \(|S|=0\) then 0
        else \(\min _{i \in\langle 1 \ldots| S| \rangle}\left(\operatorname{OBST}^{\prime}\left(S_{1, i-1}, d+1\right)+d \cdot p\left(S_{i}\right)+\operatorname{OBST}^{\prime}\left(S_{i+1,|S|}, d+1\right)\right)\)
in
        \(\operatorname{OBST}^{\prime}(A, 1)\)
end
```

Recall that $S_{i, j}$ is the subsequence $\left\langle S_{i}, S_{i+1}, \ldots, S_{j}\right\rangle$ of S. For $|A|=n$, place an asymptotic upper bound on the number of distinct arguments $O B S T^{\prime}$ will have (a tighter bound will get more credit).
(c) (7 points) Given n line segments in 2 dimensions, the 3 -intersection problem is to determine if any three of them intersect at the same point. Explain how to do this in $O\left(n^{2}\right)$ work and $O(\log n)$ span. You can assume the lines are given with integer endpoints (i.e. you can do exact arithmetic and not worry about roundoff errors).

Question 5: Longest Contiguous Increasing Subsequence (16 points)

Given a sequence of numbers, the longest contiguous increasing subsequence problem is to find the largest number of contiguous increases in a sequence of numbers. For example,
$\operatorname{LCIS}(<7,2,3,4,1,8>)$
will return 2 since there are 2 increases in a row in the contiguous subsequence <2, 3, 4>. Note that this is different from the longest increasing subsequence problem discussed in recitation.
(a) (4 points) The LCIS problem can be solved in linear work by strengthening the problem (inductive hypothesis) and solved using divide and conquer by splitting the sequence in half and solving each half. Describe what values you would return from the recursive calls to efficiently construct the solution.
(b) (4 points) Fill in the following SML code for your recursive divide-and-conquer algorithm:

```
fun LCIS (S : int seq) : int =
let
```



```
        case (showt S) of
                EMPTY =>
            | ELT(x) => __-_--_--_-_-_----------
            | NODE(L,R) => (* fill in below *)
```

 in (* fill in below *)
 end
 (c) (4 points) Assuming a tree-based implementation of sequences in which showt, and nth take $O(\log n)$ work, write recurrences for the work and span of LCIS' and state the solutions of the recurrences.
(d) (4 points) The problem can also be solved with a scan. Here is the code.

```
datatype Dir = UP of int | MIX of int
fun LCIS(S : int seq) =
let
        fun up i = if (nth S (i+1)) > (nth S i) then UP(1) else MIX(0)
        val Sup = tabulate up ((length S)-1)
        val (R,MIX(v)) = scan binop (MIX(0)) Sup
        val R' = map (fn MIX(x) => x) R
    in
        Int.max(v, reduce Int.max O R')
    end
```

Fill in the following code for binop.

```
fun binop(_ , MIX b) =
    | binop(MIX a , UP b) =
        | binop(UP a , UP b) =
```


Question 6: Median ADT (12 points)

The median of a set C, denoted by median (C), is the value of the $\lceil n / 2\rceil$-th smallest element (counting from 1). For example,

```
median({1,3,5,7}) = 3
median}({4,2,9})=
```

In this problem, you will implement an abstract data type medianT that maintains a collection of integers (possibly with duplicates) and supports the following operations:

```
insert (C,v) : medianT }\times\mathrm{ int }->\mathrm{ medianT add the integer v to C.
median(C) : medianT }->\mathrm{ int return the median value of }C\mathrm{ .
fromSeq}(S): int Seq.seq -> medianT create a medianT from S
```

Throughout this problem, let n denote the size of the collection at the time, i.e., $n=|C|$.
(a) (5 points) Describe how you would implement the medianT ADT using (balanced) binary search trees so that insert and median take $O(\log n)$ work and span.
(b) (7 points) Using some other data structure, describe how to improve the work to $O(\log n)$, $O(1)$ and $O(|S|)$ for the three operations respectively. The fromSeq S function needs to run in $O\left(\log ^{2}|S|\right)$ expected span and the work can be expected case. (Hint: think about maintaining the median, the elements less than the median, and the elements greater than the median separately.)

Question 7: Geometric Coverage (12 points)

For points $p_{1}, p_{2} \in \mathbb{R}^{2}$, we say that $p_{1}=\left(x_{1}, y_{1}\right)$ covers $p_{2}=\left(x_{2}, y_{2}\right)$ if $x_{1} \geq x_{2}$ and $y_{1} \geq y_{2}$. Given a set $S \subseteq \mathbb{R}^{2}$, the geometric cover number of a point $q \in \mathbb{R}^{2}$ is the number of points in S that q covers. Notice that by definition, every point covers itself, so its cover number must be at least 1 .

In this problem, we'll compute the geometric cover number for every point in a given sequence. More precisely:

Input: a sequence $S=\left\langle s_{1}, \ldots, s_{n}\right\rangle$, where each $s_{i} \in \mathbb{R}^{2}$ is a 2 -d point.
Output: a sequence of pairs each consististing of a point and its cover number. Each point must appear exactly once, but the points can be in any order.

Assume that we use the ArraySequence implementation for sequences.
(a) (4 points) Develop a brute-force solution genBasic (in pseudocode or Standard ML). Despite being a brute-force solution, your solution should not do more work than $O\left(n^{2}\right)$.
(b) (4 points) In words, outline an algorithm genImproved that has $O(n \log n)$ work. You may assume an implementation of OrderedTable in which split, join, and insert have $O(\log n)$ cost (i.e., work and span), and size and empty have $O(1)$ cost.
(c) (4 points) Show that the work bound cannot be further improved by giving a lower bound for the problem.

Appendix: Library Functions

```
signature SEQUENCE =
sig
    type 'a seq
    type 'a ord = 'a * 'a -> order
    datatype 'a listview = NIL | CONS of 'a * 'a seq
    datatype 'a treeview = EMPTY | ELT of 'a | NODE of 'a seq * 'a seq
    exception Range
    exception Size
    val nth : 'a seq -> int -> 'a
    val length : 'a seq -> int
    val toList : 'a seq -> 'a list
    val toString : ('a -> string) -> 'a seq -> string
    val equal : ('a * 'a -> bool) -> 'a seq * 'a seq -> bool
    val empty : unit -> 'a seq
    val singleton : 'a -> 'a seq
    val tabulate : (int -> 'a) -> int -> 'a seq
    val fromList : 'a list -> 'a seq
    val rev : 'a seq -> 'a seq
    val append : 'a seq * 'a seq -> 'a seq
    val flatten : 'a seq seq -> 'a seq
    val filter : ('a -> bool) -> 'a seq -> 'a seq
    val map : ('a -> 'b) -> 'a seq -> 'b seq
    val map2 : ('a * 'b -> 'c) -> 'a seq -> 'b seq -> 'c seq
    val zip : 'a seq -> 'b seq -> ('a * 'b) seq
    val enum : 'a seq -> (int * 'a) seq
    val inject : (int * 'a) seq -> 'a seq -> 'a seq
    val subseq : 'a seq -> int * int -> 'a seq
    val take : 'a seq * int -> 'a seq
    val drop : 'a seq * int -> 'a seq
    val showl : 'a seq -> 'a listview
    val showt : 'a seq -> 'a treeview
    val iter : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b
    val iterh : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b seq * 'b
    val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
    val scan : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq * 'a
    val scani : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq
    val sort : 'a ord -> 'a seq -> 'a seq
    val merge : 'a ord -> 'a seq -> 'a seq -> 'a seq
    val collect : 'a ord -> ('a * 'b) seq -> ('a * 'b seq) seq
    val collate : 'a ord -> 'a seq ord
```

end

ArraySequence	Work	Span							
```empty () singleton a length s nth s i```	$O(1)$	$O(1)$							
```tabulate f n if f i has }\mp@subsup{W}{i}{}\mathrm{ work and }\mp@subsup{S}{i}{}\mathrm{ span map f s if f }\mp@subsup{s}{i}{}\mathrm{ has }\mp@subsup{W}{i}{}\mathrm{ work and }\mp@subsup{S}{i}{}\mathrm{ span, and }\|s	= map2 f s t if f(si,ti) has Wi}\mathrm{ work and }\mp@subsup{S}{i}{}\mathrm{ span, and	s	=n```	$O\left(\sum_{i=0}^{n-1} W_{i}\right)$	$O\left({\underset{\max }{i=0}}_{n-1} S_{i}\right)$				
```reduce f b s if f does constant work and \|s	=n scan f b s if f does constant work and }	s	= filter p s if p does constant work and	s	=n showt s if	s	=n hidet tv if the combined length of the sequences is n```	$O(n)$	$O(\lg n)$
sort cmp s   if cmp does constant work and $\|s\|=n$	$O(n \lg n)$	$O\left(\lg ^{2} n\right)$							
```merge cmp s t if cmp does constant work, \|s	=n, and }	t	= flatten s if if s=\langle\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\ldots,\mp@subsup{s}{k}{}\rangle\mathrm{ and }m+n=\mp@subsup{\sum}{i}{}	\mp@subsup{s}{i}{}	```	$O(m+n)$	$O(\lg (m+n))$		
append (s, t) if $\|s\|=n$, and $\|t\|=m$	$O(m+n)$	$O(1)$							

Table/Set Operations	Work	Span
$\begin{aligned} & \hline \operatorname{size}(T) \\ & \operatorname{singleton}(k, v) \end{aligned}$	$O(1)$	$O(1)$
filter $f T$	$O\left(\sum_{(k, v) \in T} W(f(v))\right)$	$O\left(\lg \|T\|+\max _{(k, v) \in T} S(f(v))\right)$
map $f T$	$O\left(\sum_{(k, v) \in T} W(f(v))\right)$	$O\left(\max _{(k, v) \in T} S(f(v))\right)$
tabulate $f S$	$O\left(\sum_{k \in S} W(f(k))\right)$	$O\left(\max _{k \in S} S(f(k))\right)$
$\begin{aligned} & \text { find } T k \\ & \text { insert } f(k, v) T \\ & \text { delete } k T \end{aligned}$	$O(\lg \|T\|)$	$O(\lg \|T\|)$
$\begin{aligned} & \text { extract }\left(T_{1}, T_{2}\right) \\ & \text { merge } f T_{1} T_{2} \\ & \text { erase }\left(T_{1}, T_{2}\right) \end{aligned}$	$O\left(m \lg \left(\frac{n+m}{m}\right)\right)$	$O(\lg (n+m))$
$\begin{aligned} & \text { domain } T \\ & \text { range } T \\ & \text { toSeq } T \\ & \hline \end{aligned}$	$O(\|T\|)$	$O(\lg \|T\|)$
$\begin{aligned} & \text { collect } S \\ & \text { fromSeq } S \end{aligned}$	$O(\|S\| \lg \|S\|)$	$O\left(\lg ^{2}\|S\|\right)$
$\begin{aligned} & \text { intersection }\left(S_{1}, S_{2}\right) \\ & \text { union }\left(S_{1}, S_{2}\right) \\ & \text { difference }\left(S_{1}, S_{2}\right) \end{aligned}$	$O\left(m \lg \left(\frac{n+m}{m}\right)\right)$	$O(\lg (n+m))$

where $n=\max \left(\left|T_{1}\right|,\left|T_{2}\right|\right)$ and $m=\min \left(\left|T_{1}\right|,\left|T_{2}\right|\right)$. For reduce you can assume the cost is the same as Seq.reduce f init (range(T)). In particular Seq.reduce defines a balanced tree over the sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds assume the merging function has constant work.

