
Full Name:

Andrew ID: Section:

15–210: Parallel and Sequential Data Structures and Algorithms

Practice Final

May 2014

• There are 14 pages in this examination, comprising 7 questions worth a total of 110 points.
The last few pages are an appendix with costs of sequence, set and table operations.

• You have 80 minutes to complete this examination.

• Please answer all questions in the space provided with the question. Clearly indicate your
answers.

• You may refer to your one double-sided 81
2 × 11in sheet of paper with notes, but to no other

person or source, during the examination.

• Your answers for this exam must be written in blue or black ink.

Circle the section YOU ATTEND

Sections

A 9:30am - 10:20am Naman
B 10:30am - 11:20am Sam
C 12:30pm - 1:20pm Isaac
D 12:30pm - 1:20pm Nikki
E 1:30pm - 2:20pm Esther and Ronald
F 1:30pm - 2:20pm Ivan
G 3:30pm - 4:20pm Will and Ian

15–210 Practice Final 1 of 14 May 2014

Full Name: Andrew ID:

Question Points Score

Binary Answers 20

Costs 12

Short Answers 18

Slightly Longer Answers 20

Longest Contiguous Increasing Subsequence 16

Median ADT 12

Geometric Coverage 12

Total: 110

15–210 Practice Final 2 of 14 May 2014

Question 1: Binary Answers (20 points)
Clearly mark T or F to the left of each question.

(a) (2 points) The expressions (Seq.reduce f I A) and (Seq.iter f I A) always return the
same result as long as f is commutative.

(b) (2 points) The expressions (Seq.reduce f I A) and (Seq.reduce f I (Seq.reverse A))
always return the same result if f is associative and commutative.

(c) (2 points) Any parallel algorithm for a problem is always faster than a sequential algorithm
for the same problem.

(d) (2 points) Solving recurrences with induction can be used to show both upper and lower
bounds?

(e) (2 points) Let p be an odd prime. In open address hashing with a table of size p and given
a hash function h(k), quadratic probing uses h(k, i) = (h(k) + i2) mod p as the ith probe
position for key k. If there is an empty spot in the table quadratic hashing will always
find it.

(f) (2 points) scan f b L and reduce f b L always have the same asymptotic cost.

(g) (2 points) If a randomized algorithm has expected O(n) work, then there exists some
constant c such that the work performed is guaranteed to be at most cn.

(h) (2 points) The height of any binary search tree (BST) is O(log n).

(i) (2 points) Dijkstra’s algorithm always terminates even if the input graph contains negative
edge weights.

(j) (2 points) A Θ(n2)-work algorithm always takes longer to run than a Θ(n log n)-work
algorithm.

15–210 Practice Final 3 of 14 May 2014

Question 2: Costs (12 points)

(a) (6 points) Give tight assymptotic bounds (Θ) for the following recurrence using the tree
method. Show your work.

W (n) = 2W (n/2) + n log n

(b) (6 points) Check the appropriate column for each row in the following table:

root dominated leaf dominated balanced

W (n) = 2W (n/2) + n1.5

W (n) =
√

nW (
√

n) +
√

n

W (n) = 8W (n/2) + n2

15–210 Practice Final 4 of 14 May 2014

Question 3: Short Answers (18 points)
Answer each of the following questions in the spaces provided.

(a) (3 points) What simple formula defines the parallelism of an algorithm (in terms of work
and span)?

(b) (3 points) Name two algorithms we covered in this course that use the greedy method.

(c) (3 points) Given a sequence of key-value pairs A, what does the following code do?

Table.map length (Table.collect A)

(d) (3 points) What is the cut property of graphs that enables MST algorithms such as
Kruskal’s, Prim’s and Bor̊uvka’s to work correctly?

(e) (3 points) What asymptotically efficient parallel algorithm/technique can one use to count
the number of trees in a forest (tree and forest have their graph-theoretical meaning)?
(Hint: the ancient saying of “can’t see forest from the trees” may or may not be of help.)
Give the work and span for your proposed algorithm.

(f) (3 points) What are the two ordering invariants of a Treap? (Describe them briefly.)

15–210 Practice Final 5 of 14 May 2014

Question 4: Slightly Longer Answers (20 points)

(a) (6 points) Certain locations on a straight pathway recently built for robotics research have
to be covered with a special surface, so CMU hires a contractor who can build arbitrary
length segments to cover these locations (a location is covered if there is a segment covering
it). The segment between a and b (inclusive) costs (b− a)2 + k, where k is a non-negative
constant. Let k ≥ 0 and X = 〈x1, . . . , xn〉, xi ∈ R+, be a sequence of locations that have
to be covered. Give an O(n2)-work dynamic programming solution to find the cheapest
cost of covering these points (all given locations must be covered). Be sure to state the
subproblems and give a recurrence, including the base case(s).

(b) (7 points) Consider the following variant of the optimal binary search tree (OBST) algo-
rithm given in class:

1 function OBST (A) = let
2 function OBST ′(S, d) =
3 if |S| = 0 then 0
4 else min

i∈〈 1...|S| 〉

(
OBST ′(S1,i−1, d + 1) + d · p(Si) + OBST ′(Si+1,|S|, d + 1)

)
5 in
6 OBST ′(A, 1)
7 end

Recall that Si,j is the subsequence 〈Si, Si+1, . . . , Sj〉 of S. For |A| = n, place an asymptotic
upper bound on the number of distinct arguments OBST ′ will have (a tighter bound will
get more credit).

(c) (7 points) Given n line segments in 2 dimensions, the 3-intersection problem is to deter-
mine if any three of them intersect at the same point. Explain how to do this in O(n2)
work and O(log n) span. You can assume the lines are given with integer endpoints (i.e.
you can do exact arithmetic and not worry about roundoff errors).

15–210 Practice Final 6 of 14 May 2014

Question 5: Longest Contiguous Increasing Subsequence (16 points)
Given a sequence of numbers, the longest contiguous increasing subsequence problem is to find
the largest number of contiguous increases in a sequence of numbers. For example,

LCIS(<7, 2, 3, 4, 1, 8>)
will return 2 since there are 2 increases in a row in the contiguous subsequence <2, 3, 4>. Note
that this is different from the longest increasing subsequence problem discussed in recitation.

(a) (4 points) The LCIS problem can be solved in linear work by strengthening the problem
(inductive hypothesis) and solved using divide and conquer by splitting the sequence in
half and solving each half. Describe what values you would return from the recursive calls
to efficiently construct the solution.

(b) (4 points) Fill in the following SML code for your recursive divide-and-conquer algorithm:

fun LCIS (S : int seq) : int =
let
fun LCIS’(S : int seq) : ______________________________________ =
case (showt S) of

EMPTY => ________________________

| ELT(x) => _______________________

| NODE(L,R) => (* fill in below *)

in (* fill in below *)

end

15–210 Practice Final 7 of 14 May 2014

(c) (4 points) Assuming a tree-based implementation of sequences in which showt, and nth
take O(log n) work, write recurrences for the work and span of LCIS’ and state the solu-
tions of the recurrences.

(d) (4 points) The problem can also be solved with a scan. Here is the code.

datatype Dir = UP of int | MIX of int

fun LCIS(S : int seq) =
let

fun up i = if (nth S (i+1)) > (nth S i) then UP(1) else MIX(0)
val Sup = tabulate up ((length S)-1)
val (R,MIX(v)) = scan binop (MIX(0)) Sup
val R’ = map (fn MIX(x) => x) R

in
Int.max(v, reduce Int.max 0 R’)

end

Fill in the following code for binop.

fun binop(_ , MIX b) = _______________________

| binop(MIX a , UP b) = _______________________

| binop(UP a , UP b) = _______________________

15–210 Practice Final 8 of 14 May 2014

Question 6: Median ADT (12 points)
The median of a set C, denoted by median(C), is the value of the dn/2e-th smallest element
(counting from 1). For example,

median({1, 3, 5, 7}) = 3
median({4, 2, 9}) = 4

In this problem, you will implement an abstract data type medianT that maintains a collection
of integers (possibly with duplicates) and supports the following operations:

insert(C, v) : medianT× int→ medianT add the integer v to C.
median(C) : medianT→ int return the median value of C.
fromSeq(S) : int Seq.seq→ medianT create a medianT from S.

Throughout this problem, let n denote the size of the collection at the time, i.e., n = |C|.
(a) (5 points) Describe how you would implement the medianT ADT using (balanced) binary

search trees so that insert and median take O(log n) work and span.

(b) (7 points) Using some other data structure, describe how to improve the work to O(log n),
O(1) and O(|S|) for the three operations respectively. The fromSeq S function needs to
run in O(log2 |S|) expected span and the work can be expected case. (Hint: think about
maintaining the median, the elements less than the median, and the elements greater than
the median separately.)

15–210 Practice Final 9 of 14 May 2014

Question 7: Geometric Coverage (12 points)
For points p1, p2 ∈ R2, we say that p1 = (x1, y1) covers p2 = (x2, y2) if x1 ≥ x2 and y1 ≥ y2.
Given a set S ⊆ R2, the geometric cover number of a point q ∈ R2 is the number of points in
S that q covers. Notice that by definition, every point covers itself, so its cover number must
be at least 1.

In this problem, we’ll compute the geometric cover number for every point in a given sequence.
More precisely:

Input: a sequence S = 〈s1, . . . , sn〉, where each si ∈ R2 is a 2-d point.
Output: a sequence of pairs each consististing of a point and its cover number. Each
point must appear exactly once, but the points can be in any order.

Assume that we use the ArraySequence implementation for sequences.

(a) (4 points) Develop a brute-force solution gcnBasic (in pseudocode or Standard ML). De-
spite being a brute-force solution, your solution should not do more work than O(n2).

(b) (4 points) In words, outline an algorithm gcnImproved that has O(n log n) work. You
may assume an implementation of OrderedTable in which split, join, and insert have
O(log n) cost (i.e., work and span), and size and empty have O(1) cost.

15–210 Practice Final 10 of 14 May 2014

(c) (4 points) Show that the work bound cannot be further improved by giving a lower bound
for the problem.

15–210 Practice Final 11 of 14 May 2014

Appendix: Library Functions

signature SEQUENCE =
sig
type ’a seq
type ’a ord = ’a * ’a -> order
datatype ’a listview = NIL | CONS of ’a * ’a seq
datatype ’a treeview = EMPTY | ELT of ’a | NODE of ’a seq * ’a seq

exception Range
exception Size

val nth : ’a seq -> int -> ’a
val length : ’a seq -> int
val toList : ’a seq -> ’a list
val toString : (’a -> string) -> ’a seq -> string
val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

val empty : unit -> ’a seq
val singleton : ’a -> ’a seq
val tabulate : (int -> ’a) -> int -> ’a seq
val fromList : ’a list -> ’a seq

val rev : ’a seq -> ’a seq
val append : ’a seq * ’a seq -> ’a seq
val flatten : ’a seq seq -> ’a seq

val filter : (’a -> bool) -> ’a seq -> ’a seq
val map : (’a -> ’b) -> ’a seq -> ’b seq
val map2 : (’a * ’b -> ’c) -> ’a seq -> ’b seq -> ’c seq
val zip : ’a seq -> ’b seq -> (’a * ’b) seq

val enum : ’a seq -> (int * ’a) seq
val inject : (int * ’a) seq -> ’a seq -> ’a seq

val subseq : ’a seq -> int * int -> ’a seq
val take : ’a seq * int -> ’a seq
val drop : ’a seq * int -> ’a seq
val showl : ’a seq -> ’a listview
val showt : ’a seq -> ’a treeview

val iter : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b
val iterh : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq * ’b
val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a
val scan : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq * ’a
val scani : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq

val sort : ’a ord -> ’a seq -> ’a seq
val merge : ’a ord -> ’a seq -> ’a seq -> ’a seq
val collect : ’a ord -> (’a * ’b) seq -> (’a * ’b seq) seq
val collate : ’a ord -> ’a seq ord

end

15–210 Practice Final 12 of 14 May 2014

ArraySequence Work Span

empty ()

O(1) O(1)
singleton a
length s
nth s i

tabulate f n
if f i has Wi work and Si span

O

(
n−1∑
i=0

Wi

)
O

(
n−1
max
i=0

Si

)
map f s

if f si has Wi work and Si span, and |s| = n

map2 f s t
if f (si, ti) has Wi work and Si span, and |s| = n

reduce f b s
if f does constant work and |s| = n

O(n) O(lg n)scan f b s
if f does constant work and |s| = n

filter p s
if p does constant work and |s| = n

showt s
if |s| = n

hidet tv
if the combined length of the sequences is n

sort cmp s
if cmp does constant work and |s| = n

O(n lg n) O(lg2 n)

merge cmp s t
if cmp does constant work, |s| = n, and |t| = m O(m + n) O(lg(m + n))

flatten s
if if s = 〈s1, s2, . . . , sk〉 and m + n =

P
i |si|

append (s,t)
if |s| = n, and |t| = m

O(m + n) O(1)

15–210 Practice Final 13 of 14 May 2014

Table/Set Operations Work Span
size(T)

O(1) O(1)
singleton(k, v)

filter f T O

(∑
(k,v)∈T

W (f(v))
)

O
(

lg |T |+ max
(k,v)∈T

S(f(v))
)

map f T O

(∑
(k,v)∈T

W (f(v))
)

O
(

max
(k,v)∈T

S(f(v))
)

tabulate f S O

(∑
k∈S

W (f(k))
)

O
(

max
k∈S

S(f(k))
)

find T k
O(lg |T |) O(lg |T |)insert f (k, v) T

delete k T

extract (T1, T2)
O
(
m lg(n+m

m)
)

O
(
lg(n + m)

)
merge f T1 T2

erase (T1, T2)

domain T
O(|T |) O(lg |T |)range T

toSeq T

collect S
O(|S| lg |S|) O(lg2 |S|)

fromSeq S

intersection (S1, S2)
O
(
m lg(n+m

m)
)

O
(
lg(n + m)

)
union (S1, S2)
difference (S1, S2)

where n = max(|T1|, |T2|) and m = min(|T1|, |T2|). For reduce you can assume the cost is the
same as Seq.reduce f init (range(T)). In particular Seq.reduce defines a balanced tree over
the sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds
assume the merging function has constant work.

15–210 Practice Final 14 of 14 May 2014

