Recitation 5 — DFS, BFS, Topological Sort
Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012)

February 15, 2012

Today’s Agenda:
- Announcements
- DFS vs BFS
- Topological Sort
- Staging

1 Announcements

e Assignment 3 is due tomorrow, Thursday the 16th.
e Assignment 4 was released yesterday and is due next Tuesday the 21st.

e Questions about homework, class, life, universe?

2 DFS vs. BFS

Recall the DFS algorithm:

fun DFS(G,v) = let
fun DFS’(X,v) =
if (ve€X) then X
else iterate DFS’ (XU{v}) (Ng(v))
in DFS’({},v) end

Conceptually, one way to view depth-first search is that it recursivelly calls DFS on each neighboring node, first
searching as far as it can in one neighbor (the depth-first part), then iterating on to the second neighbor, etc.

It might be tempting to then consider a similar version of BFS which instead of iteratively calling itself on each
neighbor, runs BFS in parallel on each neighbor:

fun BFS(G,v) = let
fun BFS’(X,v) =
if (veX) then X
else parallel BFS’ (XU{v}) (Ngz(v))
in BFS’({},v) end

Q: Unfortunately, this doesn’t work at all. Why?

A: Because the calls are made in parallel, the visited sets are all independent among each parallel call now,
and we can end up visiting the same node multiple times.

To see this, consider the graph:



Parallel and Sequential Data Structures and Algorithms — Recitation 5 15-210 (Spring 2012)

A

Level 1 | B
Level 2 | D

Level 3 |

e
]
e

Q: How many times will the parallel BFS visit node B or C?

A: Once.

Q: And node D or E?

A: Twice. Each node will be visited once as a neighbor of B and once as a neighbor of C.

Q: Now for some math practice. How many times would we visit a node in level i in this graph? It may be
helpful to write this out as a recurrence.

A: Let V(i) be the number of times a node in level i is visited. Then V(i) =2V (i — 1), with V(1) = 1. So, we
get V(i) = 2'. That’s really bad!

Q: Can you think of a graph that would give even worse performance? What is the worst possible graph in
terms of number of visits?

A: Consider a fully connected graph on n nodes. After starting at any node, we will end up generating every
possible permutation of the rest of the vertices as a path that we search in parallel, giving O(n®"~Y) visited
nodes total. To see that this is also an upper bound and that we can’t do worse, observe that we will never
visit a given vertex twice in a particular chain of visits, and so any single chain of visits must correspond to a
permutation of the remaining (n — 1) elements.

3 Topological Sort

Do example topological sort on sample graph:



Parallel and Sequential Data Structures and Algorithms — Recitation 5 15-210 (Spring 2012)

4 Staging

In homework 4 you are asked to write algorithm for computing shortest paths using a staged function with
type:

val query : thesaurus -> string -> string -> string Seq.seq option

This is the function for computing a path from one word to another through the graph of thesaurus connections.
Q: What does it mean for a function to be staged? When is staging useful?

A: A staged function is one which takes multiple curried arguments, and additionally greedily performs
as much computation as possible upon receiving each argument. Staging is useful when a computation
contains a (complex) component that can be reused. For example, if you first compute shortest path tree from
word "GOOD'", you can use the same tree for computing paths to "BAD", "EVIL" and "CARROT". In this case,
computing the tree is the hard part and the rest is just a table lookup.

4.1 A staging example

Let’s now quickly look at a simple staging example. Consider you want to implement function that returns the
kth smallest value from an unsorted int sequence. Here is the type:

val kthElement : int Seq.seq -> int -> int

Non-stageable implementation:
fun kthElement s n = Seq.nth (Seq.sort Int.compare s) n

In a perfect world, the SML compiler would figure out the inner expression can be evaluated without knowing
the second argument, n. Unfortunately, this kind of analysis is difficult and the compiler doesn’t do it. Let’s
take a look at what actually happens, if we re-write the curried function as two single argument functions:

fun kthElement s = (fn n => Seq.nth (Seq.sort Int.compare s) n)

And consider what happens if we apply this function to some sequence e.g. <4,5,3,7>:



Parallel and Sequential Data Structures and Algorithms — Recitation 5 15-210 (Spring 2012)

- val app = kthElement <4,5,3,7>;

val app = fn n => Seq.nth (Seq.sort Int.compare <4,5,3,7>) n
int -> int

Now every time we call app on some number, the sort function is invoked.

Instead, we can precompute this.

Q: How would we write a stageable version of kthElement?

A:

fun kthElementStaged s =

let

val presorted = Seq.sort String.compare s
in

fn n => Seq.nth presorted n
end

Notice how the sort computation is no longer guarded by a function binding (fn). This means that when we
apply it to a sequence e.g. <4,5,3,7>, we get

kthElementStaged <4,5,3,7>;

- val app =
= fn n => Seq.nth <3,4,5,7> n : int -> int

val app
Note that we can rewrite the last line of our staged function to
Seq.nth presorted

which is exactly equivalent, but the staging is clearer to see with the explicit binding.
Q: And how do we use the staged function?

A: We first call it without the n-argument:

val f = kthElementStaged S;
val i = £ 0;

val j = f 1;

val k = £ 2;

etc...

Note: This can be called a high-order function, as it returns another function. For example, if we had a list of
indices K = <k1,k2,k3,...> such that we wanted to find the kth element in a sequence S for each ki, we
could simply do:

map (kthElementStaged S) K

Q: Can you give examples of staged functions in our library?

A: map, scan, reduce, are curried functions. Staged functions are curried functions, but staging implies that the
first stage performs some serious computation. In our library, there are not really staged functions, because it
does not include complex algorithms.



Parallel and Sequential Data Structures and Algorithms — Recitation 5 15-210 (Spring 2012)

4.2 Staging Trade-offs

Q: If you remember from last week, we had a parallel version of kthElement that ran in O(n) work and
0(log®(n)) span. What would be the cost of finding m distinct kth elements from the same sequence?

A: O(nm) work and O(log?(n)) span.

Q: Now, what if we use our staged version, kthElementStaged?

A: The one-time work of sorting the list is O(nlogn), giving a total of O(nlogn + m) work. The span is still
O(log? n). Do you see why?

Q: When should we choose to use one algorithm or the other?

A: When m > logn, the staged algorithm will due less work (ignoring constants).



	Announcements
	DFS vs. BFS
	Topological Sort
	Staging
	A staging example
	Staging Trade-offs


