Recitation 1 — Parenthesis Matching and SML Review
Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012)

Janurary 18, 2012

This recitation is aimed at helping you shake off some snow from the winter and getting you started
on Homework 1, which will be released later today. We will be using SML/NJ as our default
programming language, which you should be familiar with if you have taken 15-150 previously. We
also expect you to write clean and readable code as well as mathematical proofs.

1 Administrivia

Where is my assignment? We will be distributing the assignments for this course through a read-only
git! repository. To start you off, we've put together a handout on git commands, with pointers to
more advanced features:

http://www.cs.cmu.edu/~156210/resources/git.pdf

which will also be linked from the Resources page.

When are Office Hours? Office Hours will be posted on the course webpage at
http://www.cs.cmu.edu/~15210/staff .html

These times are subject to change. If you have time conflicts and cannot attend any of the listed office
hourse, please contact one of the course staff.

What is my grade? If you want to know your grades, visit the Gradebook page on the course website
and follow the instructions there. You will need to log in with your WebISO credentials.

2 The Fun Begins

We’ll begin with a running example: the parenthesis matching problem. We define it as follows:

e Input: a char sequence s : char Sequence.seq, where each s; is either an “(“ or “)”.
For instance, we could get a parenthesis-matched sequence

s=((0G),(),))

or a non-matching one

t=0,0),(),))

lgit is a fully distributed version control system, initially developed for Linux kernel development. Since nobody reads
footnotes, we won’t go into any more detail here.

http://www.cs.cmu.edu/~15210/resources/git.pdf
http://www.cs.cmu.edu/~15210/staff.html

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Spring 2012)

e Output: true if s represents a parenthesis-matched string and false otherwise. In the above
examples, the algorithm should output true on input s and false on input t.

To simplify the presentation, we will be working with a paren data type instead of characters. Specif-
ically, we will write a function match of type paren Sequence.seq -> bool that determines
whether the input is a well-formed parenthesis expression (i.e., it is a parenthesis-matched sequence).
The type paren is given by

datatype paren =
OPAREN
| CPAREN

where OPAREN represents an open parenthesis and CPAREN represents a close parenthesis.

So, how would we go about solving this problem? Lets begin with a simplest sequential solution and
work our way to a work-optimal parallel solution.

2.1 Sequence iter

We'll first introduce you to the SEQUENCE library which we will be using throughout the course.
Recall the standard 15-150 SEQUENCE signature:

val length : ’a seq -> int

val nth : ’a seq -> int -> ’a

val tabulate : (int -> ’a) -> int -> ’a seq

val filter : (’a -> bool) -> ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val reduce : ((’a *x ’a) -> ’a) -> ’a -> ’a seq -> ’a

The 15-210 SEQUENCE library includes these as well as many other functions which will come in
handy later on in the semester. For the current problem, we’ll use the function iter (for iterate)
from the sequence library. It has the following type:

val iter : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b

Now if f is a function, b is a value, and s is a sequence value, then iter £ b s iterates f with left
association on s using b as the base case.

2.2 Back to Parentheses

How can we use this to solve the parenthesis matching problem? A simple way of thinking about the
iter function is to think of it as a state transition. The function f that we pass to iter is responsible
for transforming the state upon seeing an input element. For this problem, we want the state to keep
track of the number of unmatched open parentheses so far. Therefore, when we see an open paren,

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Spring 2012)

the number goes up by 1, and when we see a close paren, the number goes down by 1. Using this
rule, the number could go below zero if we see more close parens than open parens. This is when we
know we can’t possibly have a well-formed parenthesis expression—we’ll designate a special state to
represent this outcome.

More specifically, our state is an int option, where we use SOME opens to mean “we have opens
unmatched open parens” and NONE to mean “we have seen too many close parens and the expression
is not well-formed.” We start with SOME O as our initial state because there is no unmatched open
parens at the beginning—and it is not difficult to see that an expression is well-formed if and only if
we leave no unmatched parens at the end (i.e., the state is SOME 0).

This leads to the following code:
fun match s =

let
fun check (NONE, _) = NONE

| check (SOME c, OPAREN) = SOME (c+1)
| check (SOME 0, CPAREN) = NONE
| check (SOME c, CPAREN) = SOME (c-1)

in
case (iter check (SOME 0) s)
of SOME 0 => true
| _ => false
end

You can show that this solution has O(n) work and span, where n is the length of the input sequence.
How can we make it more parallel?

3 Divide and Conquer

As you have already seen in previous classes, divide and conquer is a powerful technique in algorithms
design that often leads to efficient parallel algorithms. A typical divide and conquer algorithm consists
of 3 main steps (1) divide, (2) recurse, and (3) combine.

To follow this recipe, we first need to answer the question: how should we divide up the sequence?
We'll first try the simplest choice, which is to split it in half—and attempt the merge their results
somehow. This leads to the next question: what would the recursive calls return?

The first thing that comes to mind might be that the function returns whether the given sequence is
well-formed. Clearly, if both s; and s, are well-formed expressions, s; concatenated with s, must be a
well-formed expression. The problem is that we could have s; and s, such that neither of which is
well-formed but sys, is well-formed (e.g., “(((” and “)))”). This is not enough information to conclude
whether s;s, is well-formed.

We need more information from the recursive calls. You are probably already familiar with a similar
situation from mathematical induction—you often need to strengthen the inductive hypothesis. We’ll
crucially rely on the following observations (which can be formally shown by induction):

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Spring 2012)

Observation 3.1. If s contains “()” as a substring, then s is a well-formed parenthesis expression if and
only if s’ derived by removing this pair of parenthesis “()” from s is a well-formed expression.

Observation 3.2. If s does not contain “()” as a substring, then s has the form “)'(Y”. That is, it is a
sequence of close parens followed by a sequence of open parens.

That is to say, on a given sequence s, we’'ll keep simplifying s conceptually until it contains no substring
“()” and return the pair (i, j) as our result. This is relatively easy to do recursively. Consider that if
s =s;5,, after repeatedly getting rid of “()” in s; and separately in s,, we’ll have that s; reduces to
“Yi(J” and s, reduces to “)*(‘” for some i, j,k,{ € Z, U{0}. To completely simplify s, we merge the
results. That is, we merge “)!(/” with “)*(*”. The rules are simple:

e If j <k (i.e., more close parens than open parens), we’ll get “)+ =i (¢”,

e Otherwise j > k (i.e., more open parens than close parens), we'll get “)i(¢*/=k”,

This directly leads to a divide and conquer algorithm.

3.1 How to split a sequence in half?

The sequence library we give you provides a conceptual view of sequences called treeview that
lends itself particularly well to divide-and-conquer algorithms. For those of you who have used

treeview in 15-150, this concept will be very familiar. To review, we have a data type ’a treeview
defined as follows:

datatype ’a treeview =
EMPTY
| ELT of ’a
| NODE of (’a seq * ’a seq)

The function showt provides a means to examine the sequence in the treeview:
val showt : ’a seq -> ’a treeview

Essentially, showt s splits the sequence in approximately half and returns both halves as sequences,
provided that the input sequence has length at least 2. The two base cases are for empty and singleton
sequences.

3.2 Implementing the algorithm in treeview

To make it more obvious which calls are being made in parallel, we will also introduce a function
par : (unit -> ’a) * (unit -> ’b) -> ’a * ’b
If you run par (f, g), this construct allows you to execute the two functions f and g in parallel.

4

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Spring 2012)

fun match s =
let
fun match’ s =
case (showt s)
of EMPTY => (0,0)
| ELT OPAREN => (0,1)
| ELT CPAREN => (1,0)
| NODE (L,R) =>
let
val ((i,j),(k,1)) = par (fn () => match’ L, fn () => match’ R)
in
case Int.compare(j,k)
of GREATER => (i, 1 + j - k)
| _=> Ed +k -3j, D
end
in
case (match’ s)
of (0,0) => true
| _ => false
end

Running Time Analysis: Let’s assume that showt s NONE takes O(logn) work and span on any
sequence of length n. We can formulate the work and span recurrences as follows:

W(n) = 2-W(n/2)+ Wgyp(n) =2-W(n/2)+0(logn)
S(n) = S(n/2)+ Sspow(n) = S(n/2) + O(logn).

It is not too hard to see that S(n) is O(log? n)

S(n) =log(n) +log(n/2) + ... +log(1)
log(n)

= i€ 0(log*n)

i=1
It is a little more work to see W(n) = O(n) (see Lecture 3).

W(n) =1log(n)+2W(n/2)
=log(n) + 2(log(n) — 1) + 4(log(n) — 2) + ... + n(log(n) — log(n))
=n*x04+n/2x1+n/4%«24+n/8%x3+n/16x4+n/nx*log(n)
log(n)

=n Z i27t

Parallel and Sequential Data Structures and Algorithms — Recitation 1

15-210 (Spring 2012)

Let T =", i27". We can show T = 2:
o0
T=>) 2"
i=1
o0 o0
=1/2) (i-1)2707 D4+ 27!
i=1 i=1
(0.0)
=1/2) j277 +1
j=0

=T/2+1

This implies that T = 2. So, W(n) < 2n and W(n) = 0(n).
For the curious, here’s a quick way to see it.
W(n) =2W(n/2)+clogn
=c+2(clog 3 +2W(n/4))
=c+ 2clog§ +4clog% +8W(n/8)

=C10gn—|—2610g%—|—4clog%—{—8c10g%_|_...

<2cn=0(n)

Of course, we could be more formal by proving it using induction.

4 To Be Continued...

Homework 1 will be released later today, and due next Wednesday. There will be a proof of
correctness, but note that we will not be looking for a step-by-step code evaluation trace. You should
be familiar with SML evaluation by now, so we’ll be more interested in a higher-level discussion of
the algorithm itself. Please check the course website for updates on office hours if you have trouble.

	Administrivia
	The Fun Begins
	Sequence iter
	Back to Parentheses

	Divide and Conquer
	How to split a sequence in half?
	Implementing the algorithm in treeview

	To Be Continued...

