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Material in this lecture: The main theme of this lecture is suffix arrays.
- Definition: Suffix arrays
- Sorting all the suffixes faster than O(n2).

Here is a standard string-processing problem: find a pattern P in a big corpus of text S. For context,
consider the following:

Suppose we’re given a DNA sequence S (e.g., S = AGTCG.....), and we’re interested
preprocessing the string S so that after that, we can locate all occurrences of a pattern P
(|P| � |S|) in S fast (say O(|P| log |S|) or O(|P|+ log |S|))1

Last week, we discussed dynamic programming, where the main idea was to identify redundant
computation and reuse the results whenever possible. Today, we are going to see another application
of this idea, disguised in the context of string algorithms.

1 Suffix Arrays

From searching for a string pattern to finding the longest repeated substrings to computing the
maximal palindromes, suffix arrays and its close cousin got it covered. Unsurprisingly, they are
heavily used in bioinformatics applications (finding patterns in protein/DNA) and in data compression
(Burrows-Wheeler transform; see bzip2) just to give a few examples.

A suffix array is a data structure for efficiently answering queries on large strings. The suffix array
of a string S is an array giving pointers to the suffixes of S sorted in lexicographical order of the
suffixes. For concreteness, let suffi(S) denote the suffix of S starting at position i.

As an example, consider the string S = parallel. The suffixes of S are:

i suffi(S)

0 parallel
1 arallel
2 rallel
3 allel
4 llel
5 lel
6 el
7 l

†Lecture notes by Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.
1This is actually better per-pattern than KMP or similar string search algorithms, which require about O(|P|+ |S|).
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Sorting these suffixes, we get

allel
arallel
el
l
lel
llel
parallel
rallel

which results in the following suffix array:

i = 0 1 2 3 4 5 6 7

SA[i] 3 1 6 7 5 4 0 2

Notice that in this example, the suffix array indicates that suff3 < suff1 < suff6 < suff7 <

suff5 < . . . , where < denotes the lexicographical ordering.

1.1 String Matching Using Suffix Array

Let’s go back to the problem posed at the beginning of the lecture. We’ll pretend for a second that we
know how to construct suffix arrays. What can we do now?

Remember that we wanted to find occurrences of a pattern P in S. It is not hard to see that the
pattern P occurs at position i of S if and only if P is a prefix of the suffix suffi(S). This means

the occurrences of P in S = all suffixes of S having P as a prefix.

This observation allows us to transform the string matching problem into a prefix matching problem
on all the suffixes.

But we haven’t actually made any progress. To proceed, we will make use of the sortedness
property of suffix arrays. Since suffix arrays are sorted, we could perform a binary search to locate an
occurrence of the pattern. The number of comparisons required by a binary search is logarithmic in
the size of the domain (i.e., the length of the suffix array, which has |S| entries). Each comparison is
made between P and a suffix of S, which we know can be done in O(|P|) work. Therefore, for a total
of O(|P| log |S|) work, we can locate an occurrence of P, or report that none exist.

Finding Them All. If our goal is to find all occurrences of P, we’ll need an additional an observation.
The following observation follows from the sortedness of suffix arrays:

Observation: For any prefix A, all suffixes of S that have prefix A are contiguous entries
in the suffix array.

Therefore, if we’re looking for the pattern P = l in the string S = parallel, according to
these observations, we should be looking for suffixes that begin with l and we know that all the
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occurrences are next to each other in the suffix array of S. Indeed, for the string S = parallel, the
suffixes l, lel, and llel—all the suffixes that begin with P = l—are next to each other.

Given this setup, our task now boils down to locating the starting position. This can be easily done
using a binary search, which requires O(log |S|) string comparisons since the suffix array of S contains
|S| entries. As each comparsion can be performed in O(|P|) work, the total work is O(|P| log |S|).

Remarks: With a bit more work, this can be improved to O(|P|+ log |S|). For comparsion, most
efficient string searching algorithms (e.g., Knuth-Morris-Pratt and Rabin-Karp) allow us to find
occurrences of a pattern P in a string S in time O(|S|+ |P|), so preprocessing the string S can be a
big win if we’re performing multiple searches.

1.2 How to Build A Suffix Array?

We have just seen an application of suffix arrays. How can we build one given an input string?

As the definition suggests, the most straightforward way to build a suffix array is to enumerate
all the suffixes of a given string and sort them. On an input string of length n, the algorithm will
perform O(n log n) comparisons (if an efficient comparision-based sorting algorithm is used), but
unfortunately, each comparison is rather costly: comparing two strings of length n costs O(n) work.
Therefore, the overall work of this simple approach is O(n2 log n). This is slow for large input.

Exercise 1. Given two strings S and T of length n, what’s the work and span of comparing them? What
does this say about the span of the naïve algorithm for suffix arrays?

2 Building A Suffix Array in Less Than O(n2) Work

One thing is clear about the above algorithm: we’re doing a lot of redundant work comparing strings.
While sorting n arbitrary length-n strings in a comparison model will need Ω(n2 log n) work, the
strings we’re sorting aren’t arbitrarily given. After all, we’re working with the suffixes of a string. In
this part of the lecture, we’ll focus on improving the work done in comparing strings.

The goal is to be able to build a suffix array in O(n log2 n) work. The current state-of-the-art is
O(n) (which is also parallel), but this is beyond the scope of the class.

Say we want to compare two strings X = x0 x1 . . . xn−1 and Y = y0 y1 . . . ym−1, which have lengths
n and m. The simplest implementation costs O(min(n, m)) work as it would compare x0 against y0
and returns an answer if x0 differs from y0, but otherwise, it proceeds to compare x1 against y1 so
on so forth until it finds a location where the two strings differ. In code, we have:

fun strcmp (X, Y) =
case (X, Y)

of (nil, nil) => EQUAL
| (nil, _) => LESS
| (_, nil) => GREATER
| (x::X’,y::Y’) =>

(case compare(x, y)
of EQUAL => strcmp(X’, Y’)
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| r => r)

For a moment, we’ll assume that X and Y have the same length (i.e., n = m). We’ll also pretend
that we have done the comparison suff1(X ) and suff1(Y ) before. With these assumptions, if we
have access to the outcome of r = strcmp(suff1(X ),suff1(Y )), then we can compare X with
Y in O(1): if x0 = y0, then return r else return compare(x0,y0). But to take advantage of this
idea, we’ll probably need to compute a lot of states, most likely O(n2) of them. We haven’t made any
saving.

The idea is to generalize this approach further. We’ll experiment with divide and conquer. For
simplicity, we’ll still assume that n= m. In addition, we’ll assume that n= m= 2k is a power of two.
Then, we can write X and Y as

X = X0 X1

Y = Y0 Y1 ,

where X0 = x0 x1 . . . xn/2, X1 = xn/2+1 . . . xn−1, and Y0 and Y1 are defined similarly for Y . We have:

Observation: strcmp(X,Y) = case strcmp(X0,Y0) of EQUAL=>strcmp(X1,Y1) | r=>r

This leads to the following pseudocode implementation, which seems a bit convoluted and doesn’t
yet help us in any way:

fun strcmp (X as X_0X_1, Y as Y_0Y_1) =
case (X, Y)

of ... (* handle base cases *)
| _ =>

(case strcmp(X_0,Y_0)
of EQUAL => strcmp(X_1, Y_1)
| r => r)

How might we reuse some of the results to speed up the construction of suffix arrays? Let’s try
the following simple idea: we’ll split every suffix in half and hope that these substrings have been
compared before. On our running example of S = parallel, we would have the following (we use
the special symbol $, which is lexicographically smaller than any real symbol, to preserve the length):

para llel

aral lel$

rall el$$

alle l$$$

llel $$$$

lel$ $$$$

el$$ $$$$

l$$$ $$$$
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We quickly realize that if we are to do less work than O(n2), we couldn’t have compared all
combinations of these length-(n/2) pairs before. In fact, even if we could, we wouldn’t have the
space or time to store the information. There are too many pairs after all.

Here is where we need a new idea: instead of storing the outcome of a comparison, we’ll
“rank” these substrings in a way their ranks can be compared in place of comparing the actual
strings. Let ranki(S,`) denote the rank of the length-` substring of S starting at i (i.e., the substring
S[i..i+ `− 1]). The guarantee we make is the following: for any length ` > 0,

Int.compare(ranki(S,`), rank j(S,`))= String.compare(S[i..i + `− 1], S[ j.. j+ `− 1]) (1)

One possibility is to rank the smallest string 0, the second smallest string 1, etc. Using this idea,
we would assign the ranking:

para: 6 llel: 5

aral: 1 lel$: 4

rall: 7 el$$: 2

alle: 0 l$$$: 3

llel: 5 $$$$: -1

lel$: 4 $$$$: -1

el$$: 2 $$$$: -1

l$$$: 3 $$$$: -1

Sorting The Suffixes of S Using Rank. Before we talk about computing the rank function, let’s
see how we can use the rank information to sort all the suffixes of a string S. Say we have the rank
information for all length |S|/2 substrings of S, like in the example above. We can easily sort the
suffixes of S using the following 2-step process:

1. Make a sequence (i, (ranki(S, |S|/2),ranki+n/2(S, |S|/2))).

2. Sort this sequence by the rank pairs.

2.1 How to Compute the Rank Function?

The idea is to construct the rank function recursively. To pursue this idea, there are two questions
that need to be answered:

1. Base Case. How can we efficiently compute the rank function for `= 1?

2. Inductive Case. How can we quickly derive the rank function for ` > 1 given the rank function
for `′ < `? Presumably, we want an even split (e.g., `′ = `/2) to avoid O(n)-depth recursion.
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We’ll start with the base case. More concretely, the task here is: given a length-n sequence of
characters (i.e., the input has type char seq), construct a sequence R of length n such that R[i] is
an integer denoting the rank of the character at position i of the input.

The simplest approach (as was suggested by the class) is to use the ASCII value of these characters.
It is easy to check that this satisfies the rank requirement, see Equation (1). In code, we can write the
following:

fun rankBase (S : char seq) : int seq =
tabulate (fn i => Char.ord (nth S i)) (length S)

We’ll consider a slightly more complicated approach, which hints at what we’ll need to do in the
recursive case. This alternative also has the advantage that the rank numbers are between 0 and
|S| − 1 and that it works with “black-box” characters (you can only compare elements but you don’t
have any side information about their ordering).

The following code captures the essence of the rank function in the base case:

1 % compute the rank where the i-th element is the rank of S[i..i+ `− 1]
2 fun rankBase(S) : int seq=
3 let

4 val pairs= 〈 (i, S[i]) : i = 0, . . . , |S| − 1 〉
5 val sortedPairs= sort (Char.compare o second) pairs
6 val newRank= 〈 (#1 sortPairs[i], i) : i = 0, . . . , |S| − 1 〉
7 in inject newRank 〈−1 : i = 0, . . . , |S| − 1 〉 end

It first sorts all the characters and use the index in the sorted sequence as the rank. The sequence
newRank stores ordered pairs (position, rank), so we can use inject to derive the desired sequence.

But as the following example shows, the algorithm doesn’t correctly handle repeated characters.

p a r a l l e l

=> (0,p), (1,a), (2,r), (3,a), (4,l), (5,l), (6,e), (7,l)

sort

=> (1,a), (3,a), (6,e), (4,l), (5,l), (7,l), (0,p), (2,r)

assign ranking: (index, rank)
=? (1,0), (3,1), (6,2), (4,3), (5,4), (7,5), (0,6), (2,7)

actually, we want:

== (1,0), (3,0), (6,2), (4,3), (5,3), (7,3), (0,6), (2,7)

What we need to do is to make sure that if s and t are the same character, they get the same rank
number. Since the sequence is already sorted, this is easily done with a scan (see the lectures on
scan).
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Inductive Case. Building on the ideas we laid out so far, we could represent each length ` string
as an ordered pair of rank numbers: that is, we will represent the substring S[i..i + `− 1] as the
ordered pair (ranki(S,`/2),ranki+`/2(S,`/2)) (we’re still assuming ` is a power of two). This
conversion allows us to sort these length-` substrings in O(n log n) work because each comparison is
made between a pair of int pairs, which can be done in constant work, and we only need O(n log n)
comparisons using an efficient sorting algorithm. This leads to the following pseudocode:

1 % compute the rank where the i-th element is the rank of S[i..i+ `− 1]
2 fun rank(S,`) : int seq=
3 if `= 1 then rankBase(S) else
4 let

5 val rank′ = rank(S,`/2)
6 val fun rnk i = if (i ≥ |S|) then − 1 else rank′[i]
7 val pairs=

¬

(i, (rnk i,rnk(i+ `/2))) : i = 0, . . . , |S| − 1
¶

8 val sortedPairs= sort (intPairCmp o second) pairs
9 val newRank= 〈 (#1 sortPairs[i], i) : i = 0, . . . , |S| − 1 〉

10 in inject newRank 〈−1 : i = 0, . . . , |S| − 1 〉 end

Like in the base case, the sequence newRank contains ordered pairs (position, rank) so that the
inject function can be used to construct the desired result; however, the same problem that arose
with duplicate strings in the base case also shows up here.

Exercise 2. The code as writen is broken. Fix the computation newRank when the substrings contain
duplicates.

Analysis. It is not difficult to see that within each recursive call to rank, we spend O(n log n)
work to sort and other bookkeeping. Additionally, for ` > 1, we make a recursive call with ` half
the original `. Therefore, we have the following recurrence: W (`) = W (`/2) + O(n log n), with
W (1) = O(n log n) (or O(n) if we’re using the first construction for the base case). This solves to
W (n) = O(n log2 n), which is better than O(n2), as we promised.

Stay tuned for an SML/NJ implementation of this (as well as a C/C++ implementation) in the
Git repository.
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