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Today:
- Introduction to Dynamic Programming
- The subset sum problem
- The minimum edit distance problem

1 Dynamic Programming

‘An interesting question is, "Where did the name, dynamic programming, come from?’
The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington name Wilson. He was Secretary of Defense, and he actually
had a pathological fear and hatred of the word, research. I'm not using the term lightly;
I'm using it precisely. His face would suffuse, he would turn red, and he would get violent
if people used the term, research, in his presence. You can imagine how he felt, then,
about the term, mathematical. The RAND Corporation was employed by the Air Force,
and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something
to shield Wilson and the Air Force from the fact that I was really doing mathematics
inside the RAND Corporation. What title, what name, could I choose? In the first place
I was interested in planning, in decision making, in thinking. But planning, is not a
good word for various reasons. I decided therefore to use the word, ‘programming.’
I wanted to get across the idea that this was dynamic, this was multistage, this was
time-varying—I thought, let’s kill two birds with one stone. Let’s take a word that has an
absolutely precise meaning, namely dynamic, in the classical physical sense. It also has
a very interesting property as an adjective, and that is it’s impossible to use the word,
dynamic, in a pejorative sense. Try thinking of some combination that will possibly give
it a pejorative meaning. It’s impossible. This, I thought dynamic programming was a
good name. It was something not even a Congressman could object to. So I used it as an
umbrella for my activities”.

Richard Bellman (“Eye of the Hurricane: An autobiography”, World Scientific, 1984)

The Bellman-Ford shortest path algorithm we have covered is named after Richard Bellman and
Lester Ford. In fact that algorithm can be viewed as a dynamic program. Although the quote is an
interesting bit of history it does not tell us much about dynamic programming. But perhaps the quote
will make you feel better about the fact that the term has little intuitive meaning.’

In this course, as commonly used in computer science, we will use the term dynamic programming
to mean an algorithmic technique in which (1) one constructs the solution of a larger problem instance

tLecture notes by Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.
!And perhaps it will make you feel more compelled to fight scientific bigotry among our politicians.
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by composing solutions to smaller instances, and (2) the solution to each smaller instance can be
used in multiple larger instances. For example, in the Bellman-Ford algorithm, to find the shortest
path from the source to vertex v that uses at most i vertices, depends on finding the shortest paths
to the in-neighbors of v that uses at most i — 1 vertices. As vertices may share in-neighbors, these
smaller instances maybe used more then once. Dynamic programming is thus one of the inductive
algorithmic techniques we are covering in this course.

Recall from Lecture 1 that in all the inductive techniques an algorithm relies on putting together
smaller parts to create a larger solution. The correctness then follows by induction on problem size.
The beauty of such techniques is that the proof of correctness parallels the algorithmic structure.

So far the inductive approaches we have covered are divide-and-conquer, the greedy method,
and contraction. In the greedy method and contraction each instance makes use of only a single
smaller instance. In the case of greedy algorithms the single instance was one smaller—e.g. Dijkstra’s
algorithm that removes the vertex closest to the set of vertices with known shortest paths and adds it
to this set. In the case of contraction it is typically a constant fraction smaller—e.g. solving the scan
problem by solving an instance of half the size, or graph connectivity by contracting the graph by a
constant fraction.

In the case of divide-and-conquer, as with dynamic programming, we made use of multiple
smaller instances to solve a single larger instance. However in divide-and-conquer we have always
assumed the solutions are solved independently and hence we have simply added up the work of
each of the recursive calls. But what if two instances of size k, for example, both need the solution to
the same instance of size j < k?

Although sharing the results in this simple example will only make at most a factor of two difference
in work, in general sharing the results of subproblems can make an exponential difference in the
work performed. The simplest, albeit not particularly useful, example is in calculating the Fibonacci
numbers. As you have likely seen, one can easily write the recursive algorithm for Fibonacci:

1 fun fib(n)=
2 if (n<1) then 1
3 else fib(n—1)+fib(n—2)

But this recursive version will take exponential time in n. If the results from the instances are
somehow shared, however, then the algorithm only requires linear work:
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It turns out there are many quite practical problems where sharing results of subinstances is useful
and can make a significant differences in the work used to solve a problem. We will go through
several of these examples.

With divide-and-conquer the composition of a problem instance in terms of smaller instances is
typically described as a tree, and in particular the so called recursion tree. With dynamic programming
the composition can instead be viewed as a Directed Acyclic Graph (DAG). Each vertex in the DAG
corresponds to a problem instance and each edge goes from an instance of size j to one of size
k > j—i.e. we direct the edges (arcs) from smaller instances to the larger ones that use them?. We
direct them this way since the edges can be viewed as representing dependences between the source
and destination (i.e. the source has to be calculated before the destination can be). The leaves of
this DAG (i.e. vertices with no in-edges) are the base cases of our induction (instances that can be
solved directly), and the root of the DAG (the vertex with no out-edges) is the instance we are trying
to solve. More generally we might actually have multiple roots, although this can be converted into a
DAG with a single root by adding a new vertex and an edge from each of the previous roots to this
single new root.

Abstractly dynamic programming can therefore be best viewed as evaluating a DAG by propagating
values from the leaves to the root and performing some calculation at each vertex based on the
values of its in-neighbors. Based on this view calculating the work and span of a dynamic program
is relatively straightforward. We can associate with each vertex a work and span required for that
vertex. The overall work is then simply the sum of the work across the vertices. The overall span
is the longest path in the DAG where the path length is the sum of the spans of the vertices along
that path. Many dynamic programs have significant parallelism although some do not. For example
consider the following DAG in which the work and span for each vertex is given.

2Note that “size” is used in an abstract sense and does not necessarily mean the size (e.g. number of bytes) of the input
but rather any measure that can be used for inductive purposes.
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work, span

This does 5411+ 342+ 441 = 26 units of work and has a spanof 1+2+3+1=7.

The challenging part of developing an algorithm for a problem based on dynamic programming
is figuring out what DAG to use. The best way to do this, of course, is to think inductively—how
can I solve an instance of a problem by composing the solutions to smaller instances? Once an
inductive solution is formulated you can think about whether the solutions can be shared and how
much savings can be achieved by sharing. As with all algorithmic techniques, being able to come
up with solutions takes practice. It turns out, however, that most problems that can be tackled with
dynamic programming solutions are optimization or decision problems. An optimization problem is
one in which we are trying to find a solution that optimizes some criteria (e.g. finding a shortest
path, or finding the longest contiguous subsequence sum). A decision problem is one in which we are
trying to find if a solution exists. Other related problems include counting and enumerating (optimal)
solutions.

Although dynamic programming can be viewed abstractly as a DAG, in practice we need to
implement (code) the dynamic program. There are two common ways to do this, which are referred
to as the top-down and bottom-up approaches. The top-down approach starts at the root and uses
recursion, as in divide-and-conquer, but remembers solutions to subproblems so that when the
algorithm needs to solve the same instance many times only the first call does the work and the
remaining calls just look up the solution. Storing solutions for reuse is called memoization. The
bottom-up approach starts at the leaves of the DAG and typically processes the DAG in some form of
level order traversal—for example, by processing all problems of size 1 and then 2 and then 3, and
so on. Each approach has its advantages and disadvantages. Using the top-down approach (recursion
with memoization) can be quite elegant and can be more efficient in certain situations by evaluating
only those instances actually needed. Using the bottom up approach (level order traversal of the
DAG) assumes it will need every instance whether or not is it use in the overal solution, but can be
easier to parallelize and can be more space efficient. It is important, however, to remember to first
formulate the problem abstractly in terms of the inductive structure, then think about it in terms of how
substructure is shared in a DAG, and only then worry about coding strategies.
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1.1 Subset Sums

The first problem we will cover in this lecture is a decision problem, the subset sum problem:

Definition 1.1. The subset sum (SS) problem is, given a multiset® of positive integers S and a positive
integer value k, determine if there is any X C S such that ), _, x =k.

For example, consider the multiset S = {1,4,2,9}. There is no subset that sums to 8, where as if
the target sum is k = 8, the subset {1, 4,2} is a solution.

In the general case when k is unconstrained this problem is a classic NP-hard problem. However,
our goal here are more modest. We are going to consider the case where we include k is the work
bounds. We show that as long as k is polynomial in n then the work is also polynomial in n. Solutions
of this form are often called pseudo-polynomial work (time) solutions.

This problem can be solved by brute force simply considering all possible subsets. This clearly
takes exponential time. For a more efficient solution, one should consider an inductive solution to
the problem. As greedy algorithms tend to be efficient, you should first consider some form of greedy
method that greedily takes elements from S. Unfortunately greedy does not work.

We therefore consider a divide-and-conquer solution. Naively, this will also lead to exponential
work, but by reusing subproblems we can show that it results in an algorithm that requires only
O(|S|k) work. The idea is to consider one element a out of S and consider the two possibilities:
either a is included in X or not. For each of these two possibilities we make a recursive call on the
subset S \ {a}, and in one case we subtract a from k (a € X) and in the other case we leave k as is
(a € X). Here is an algorithm based on this idea. It assumes the input is given as a list (the order of
the elements of S in the list does not matter):

fun SS(S,k) =
case (showlS,k) of
(_,0)=true
| (NIL, )= false
| (CONS(a,R), )=
if (a > k) then SS(R,k)
else (SS(R,k —a) orelse SS(R,k))

N O WN -

Everything except for the first and last line are base cases. In particular if k = 0 then the result is
true since the empty set adds to zero. If k # 0 and S is empty, then the result is false since there is
no way to get k from an empty set. If S is not empty but its first element a is greater than k, then
we clearly can not add a to X, and we need only make one recursive call. The last line is the main
inductive case where we either include a or not. In both cases we remove a from S in the recursive
call R.

What is the work of this algorithm? Well, it leads to a binary recursion tree that might be n deep.
This would imply something like 2" work. This is not good. The key observation, however, is that
there is a huge overlap in the subproblems. For example here is the recursion tree for the instance
SS({1,1,1},3):

3A multiset is like a set, but may include duplicate elements.
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SS({1,1,1}, 3)

/ \

SS({1,1}, 2) SS({1,1}, 3)

PN N

SS({1}, 1) SS({1}, 2) SS({1}, 2) SS({1}, 3)

/N /N /

SS(¢,0) SS(¢h,1) SS(¢p, 1) SS(¢h,2) SS(¢h,1) SS(¢h,2) SS(¢p,2) SS(¢h,3)

As you should notice there are many common calls. In the bottom row, for example there are three
calls each to SS(, 1) and SS(, 2). If we coalesce the common call we get the following DAG where the
edges are all going up, the leaves are at the bottom and root is at the top.

SS({1,1}, 2) SS({1,1}, 3)
SS({1}, 1) SS({1}, 2) SS({1}, 3)
SS(¢, 0) SS(¢, 1) SS(¢, 2) SS(¢, 3)

The question is how do we bound the number of distinct instances of SS, which is also the number of
vertices in the DAG?

For an initial instance SS(S, k) there are are only |S| distinct lists that are ever used (each suffix of
S). Furthermore, the value of second argument in the recursive calls only decreases and never goes
below 0, so it can take on at most k + 1 values. Therefore the total number of possible instances of
SS (vertices in the DAG) is |S|(k + 1) = O(k|S|). Each instance only does constant work to compose
its recursive calls. Therefore the total work is O(k|S|). Furthermore it should be clear that the longest
path in the DAG is O(|S]) so the total span is O(|S|) and the algorithm has O(k) parallelism.

Why do we say the algorithm is pseudo-polynomial? The size of the subset sum problem is
defined to be the number of bits needed to represent the input. Therefore, the input size of k is logk.
But the work is O(2'°¢¥|s|), which is exponential in the input size. If k, however, is a polynomial in
|S|, then the input size of k is O(|S|), and the algorithm is polynomial in |S|.

At this point we have not fully specified the algorithm since we have not explained how to take
advantage of the sharing—certainly the recursive code we wrote would not. We will get back to this
after a couple more examples. Again we want to emphasize that the first two orders of business are
to figure out the inductive structure and figure out what instances can be shared.
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1.2 Minimum Edit Distance

The second problem we consider is a optimization problem, the minimum edit distance problem.

Definition 1.2. The minimum edit distance (MED) problem is, given a character set > and two
sequences of characters S = ©* and T = %*, determine the minimum number of insertions and
deletions of single characters required to transform S to T.

For example if we started with the sequence
S=(A,B,C,A D,A)

we could convert it to
T =(AB,AD,C)

with 3 edits (delete the C, delete the last A and insert a C). This is the best that can be done so the
fewest edits needed is 3.

The MED problem is an important problem that has many applications. For example in version
control systems such as git or svn when you update a file and commit it, the system does not
store the new version but instead only stores the “differences” from the previous version*. Storing
the differences can be quite space efficient since often the user is only making small changes and
it would be wasteful to store the whole file. Variants of the minimum edit distance problem are
use to find this difference. Edit distance can also be used to reduce communication costs by only
communicating the differences from a previous version. It turns out that edit-distance is also closely
related to approximate matching of genome sequences.

The first observation is that inserting a character into S is equivalent to deleting a character in T.
The solution in the above example could be stated as delete C in S, delete the last A in S, delete C
in T. Using this formulation, a brute force solution would be to compute all subsequences of S and
for any of them that are a subsequences of T return the longest one, clearly an exponential solution.
This formulation of the problem is often known as the longest common subsequence problem.

Another possibility would be to consider a greedy method that scans the sequences finding the
first difference, fixing it and then moving on. Unfortunately no simple greedy method is known to
work. The problem is that there can be multiple ways to fix the error—we can either delete the
offending character, or insert a new one. In the example above when we get to the C in S we could
either delete C or insert an A. If we greedily pick the wrong way to fix it, we might not end up with
an optimal solution. (Recall that in greedy algorithms, once you make a choice, you cannot go back
and try an alternative.) Again in the example, if you inserted an A, then more than two more edits
will be required.

The first key step in dynamic programming is to recognize the inductive structure of the problem.
This step requires precisely defining the subproblems that we will consider. The goal is to keep the
number of subproblems small. For example, one possibility would be to find the fewest edits needed
between any contiguous subsequences of S and T. Since the number of contiguous subsequences
of a sequence of length n is (";1), there are O(|S|?|T|?) possible pairs of subsequences to consider.
Although this number is much less the exponential, it is still large. A better choice is to consider all

suffixes (or prefixes) of S and T. Now there are at most O(|S||T|) pairs of suffixes to consider.

“4Alternatively it might store the new version, but use the differences to encode the old version.
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Another key step is to simplify the problem. Don’t be tempted to keep track of the all the insertions
and deletions needed to solve each subproblem and then consider how to combine all these solutions
to get the fewest edits needed for the larger problem. Let’s start by finding a simple value: the
minimum number of edits required. Later we can consider how to reconstruct the actual edits that
lead to that minium number. Such an approach is common for optimization problems. For example,
in the single source shortest path problem, we only considered the distances to each vertex, not the
paths themselves. Later we modified the algorithm so that it was easy to find the shortest paths.

Next, how do we find the MED(S, T) in terms of the smaller problems? The greedy solution gives
a good hint how. Suppose S =s::S" and T =t :: T’. If the first characters of S and T match, then no
insertion or deleted is needed, and the we only need to consider edits to the suffixes, S" and T’. But
what if the first two characters do not match? In particular when we get to the C in our example
there were exactly two possible ways to fix it—deleting C or inserting A. As with the subset sum
problem, why not consider both ways. This leads to the following algorithm.

fun MED(S,T) =
case (showl(S),showl(T)) of
(_,NIL)=|S|
| (NIL, _)=|T]
| (CONS(s,S"), CONS(t, T")) =
if (s=t) then MED(S’,T')
else 1+ min(MED(S, T"),MED(S’, T))

N O WN -

In the first base case where T is empty we need to delete all of S to generate an empty string
requiring |S| insertions. In the second base case where S is empty we need to insert all of T, requiring
|T| insertions. If neither is empty we compare the first character. If they are equal we can just skip
them and make a recursive call on the rest of the sequences. If they are different then we need to
consider the two cases. The first case (MED(S, T’)) corresponds to inserting the value t. We pay
one edit for the insertion and then need to match up S (which all remains) with the tail of T (we
have already matched up the head t with the character we inserted). The second case (MED(S’, T'))
corresponds to deleting the value s. We pay one edit for the deletion and then need to match up the
tail of S (the head has been deleted) with all of T.

If we ran the code recursively we would end up with an algorithm that takes exponential work. In
particular the recursion tree is binary and has a depth that is linear in the size of S and T. However,
as with subset sums, there is significant sharing going on. Again we view the computation as a DAG
in which each vertex corresponds to call to MED with distinct arguments. An edge is placed from u to
v if the call v uses u. For example here is the DAG for MED({A,B,C ), (D, B, C)) (all edges point up):

8 Version 0



Parallel and Sequential Data Structures and Algorithms — Lecture 23 15-210 (Spring 2012)

MED(ABC, DBC) ABC = <A,B,C>

N

MED(BC, DBC)  MED(ABC, BC)

SN N

MED(C, DBC) MED(BC, BC) MED(ABC, C)
MED(¢, Dg E(C,BC) MED(]{;) \MED(ABC, )
MED(¢,£’ \MED(C, C) / ‘hD(BC, @)
IVIED(T¢, ?)

We can now place an upper bound on the number of vertices in our DAG by bounding the number
of distinct arguments. There can be at most |S| + 1 possible values of the first argument since in
recursive calls we only use suffixes of the original S and there are only |S|+ 1 such suffixes (including
the empty and complete suffixes). Similarly there can be at most |T |+ 1 possible values for the second
argument. Therefore the total number of possible distinct arguments to MED on original strings S and
T is (|T|+ 1)(|S| + 1) = O(|S||T|). Furthermore the depth of the DAG (longest path) is O(|S| + |T|)
since each recursive call either removes an element from S or T so after |S| + |T| calls there cannot
be any element left. Finally we note that assuming we have constant work operations for removing
the head of a sequence (e.g. using a list) then each vertex of the DAG takes constant work and span.

All together this gives us
W(MED(S, T)) = O(ISIIT])

and
S(MED(S, T)) =O(|S|+|T}).

1.3 Problems with Efficient Dynamic Programming Solutions

1. Fibonacci numbers

2. Using only addition compute (n choose k) in O(nk) work
3. Edit distance between two strings

4. Edit distance between multiple strings

5. Longest common subsequence

6. Maximum weight common subsequence

7. Can two strings S1 and S2 be interleaved into S3

8. Longest palindrome

9. longest increasing subsequence
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10. Sequence alignment

11. Sequence alignment with gaps

12. subset sum

13. knapsack problem (with and without repetitions)
14. weighted interval scheduling

15. line breaking in paragraphs

16. break words in which space has been removed
17. chain matrix product

18. multiplication with a non associative operation — does any parenthesization give a desired
result.

19. maximum value for parenthesizing x1/x2/x3.../xn for positive rational numbers
20. cutting a string at given locations to minimize cost (costs n to make cut)

21. all shortest paths

22. find maximum independent set in trees

23. smallest vertex cover on a tree

24. optimal bst

25. probability of generating exactly k heads with n biased coin tosses

26. triangulate a convex polygon while minimizing the length of the added edges
27. cutting squares of given sizes out of a grid

28. card game while picking largest value from one end or the other.

29. change making

30. box stacking

31. segmented least squares problem

32. counting boolean parenthesization — true, false, or, and, xor, count how many parenthesization
return true

33. balanced partition — given a set of integers up to k, determine most balanced two way partition
34. RNA secondary structure

35. Largest common subtree
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