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Lectured by Margaret Reid-Miller — 8 March 2012

Today:
- More on Treaps
- Ordered Sets and Tables
- Augmenting Balanced Trees

1 Today

Today we will continue looking at treaps and show that the expected depth of a treap is O(logn).
The analysis is similar to the analysis of quicksort work. In doing so, we show that quicksort has
expect span O(log? n). Then we will extend tables and sets interfaces to take advantage of ordering
to enable more functionality Finally, we will give one example of augmenting balanced trees to
implement additional operations efficiently.

Last time we showed that randomized quicksort has worst-case expected O(nlogn) work, and
this expectation was independent of the input. That is, there is no bad input that would cause the
work to be worse than O(nlogn) all the time. It is possible, however, (with extremely low probability)
we could be unlucky, and the random chosen pivots could result in quicksort taking O(n?) work.

It turns out the same analysis shows that a deterministic quicksort will on average have O(nlogn)
work. Just shuffle the input randomly, and run the algorithm. It behaves the same way as randomized
quicksort on that shuffled input. Unfortunately, on some inputs (e.g., almost sorted) the deterministic
quicksort is slow, O(n?), every time on that input.

Treaps take advantage of the same randomization idea. Since a binary search tree is a dynamic
data structure, it cannot change order in which operations are requested. So instead of randomizing
the input order, it adds randomization so that the data structure itself is random.

2 Expected Depth of a Node in a Treap

Recall that a treap is a binary search tree (BST) in which we associate with each key a random
priority. The tree is maintained so that the priorities associated with the keys are in (max) heap order,
i.e. the priority at a node is larger than the priorities of both of its children. We will now analyze the
expected depth of a key in the tree. This analysis is similar to the analysis we did for quicksort.

Consider a set of keys K and associated priorities p : key — int. We assume the priorities are
unique. Consider the keys laid out in order, and as with the analysis of quicksort, we use i and j to
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refer to keys at two positions in this ordering. Unlike quicksort analysis, though, when analyzing the
depth of a node i, i and j can be in any order, since an ancestor in a BST can be either less than or
greater than node i.

If we calculate the depth starting with zero at the root, the expected depth of a key is equivalent
to the number of ancestors it has in the tree. So we want to know how many ancestors a particular
node i has. We use the indicator random variable A]i to indicate that j is an ancestor of i. (Note that
the superscript here does not mean A; is raised to the power j; it simply is a reminder that j is the
ancestor of i.) Now the expected depth of i can be written as:

n

E [depthof i in T] =E | > A =2n:E[A{f].
i=1

=1

To analyze Ajl. let’s just consider the |j —i| + 1 keys and associated priorities from i to j inclusive of
both ends. As with the analysis of quicksort, if an element k has the highest priority and k is less
than both i and j or greater than both i and j, it plays no role in whether j is an ancestor of i or not.
The following three cases do:

1. The element i has the highest priority.
2. One of the elements k in the middle has the highest priority (i.e., neither i nor j).

3. The element j has the highest priority.

What happens in each case?

In the first case j cannot be an ancestor of i since i has a higher priority, and AJl. = 0. In the second

case Ali = 0, also. Suppose it was not. Then, as j is an ancestor of i, it must also be an ancestor of k.
That is, since in a BST every branch covers a contiguous region, if i is in the left (or right) branch of
j, then k must also be. But since the priority of k is larger than that of j this cannot be the case, so j
is not an ancestor of i. Finally in the third case, j must be an ancestor of i and AJi = 1, otherwise to
separate i from j would require a key in between with a higher priority. We therefore have that j is
an ancestor of i exactly when it has a priority greater than all elements from i to j (inclusive on both
sides).

Because priorities are selected randomly, there a chance of 1/(]j —i|+ 1) that A{: =1 and we have

E [AJI] = Ij—il —- Note that if we include the probability of either j being an ancestor of i or i being

an ancestor of j then the analysis is identical to quicksort. Think about why. Recall from last lecture
that the recursion tree for quicksort is identical to the structure of the corresponding treap (assuming

the same keys and priorities).
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Now we have

n
1
E[depthofiinT] = Z _
s I =il
i—1 n
1 1

= Z++ Z —

j=11—1+1 j=i+1]—l+1
= Hi—1+Hp ;4; -1
< 2lnn
= O(logn)

Recall that the harmonic number is H,, = Z?:l % It has the following bounds: Inn < H, <1+ Inn.
Notice that the expected depth of a key in the treap is determined solely by it relative position in the

sorted keys.

Exercise 1. Including constant factors how does the expected depth for the first key compare to the
expected depth of the middle (i = n/2) key.

Split and Join on Treaps

As mentioned last week for any binary tree all we need to implement is split and join and these can
be used to implement the other operations.

We claimed that the split code given in lecture 14 for unbalanced trees does not need to be
modified at all for Treaps.

The join code, however, does need to be changed. The new version has to check the priorities
of the two roots and use whichever is greater as the new root. In the algorithm shown below, we
assume that the priority of a key can be computed from the key (e.g., priorities are a hash of the key).

1 fun join(Ty,m,T,) =
2 let
3 fun singleton(k,v)=Node(Leaf,Leaf,k,v)
4 fun join'(Ty, Ty) =
5 case (T;,T,) of
6 (Leaf, )=>T,
7 | (_,Leaf)=>T;
8 | (Node(Lq,Rq,kq,vq),Node(Ly, Ry, ky,v5)) =
9 if (priority(k;)> priority(k,)) then
10 Node(Lq, join'(Ry, Ty), kq,v1)
11 else
12 Node(join/(Ty, Lsy),Ry, ko, V)
13 in
14 case m of
15 NONE = join/(Ty, T,))
16 | SOME(k,v)=> join/(Ty, join'(singleton(k,v), T,))
17 end
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In the code join’ is a version of join that does not take a middle element. Note that line 9 compares
the priorities of the two roots and then places the key with the larger priority in the new root causing
a recursive call to join on one of the two sides.

Because the keys and priorities determines a treap uniquely, repeated splits and joins on the same
key, results in the same treap. This property is not always true of most other kind of balanced trees;
the order that operations are applied can change the shape of the tree.

We refer to the left spine of the tree as the path from the root to the leftmost node in the tree, and
the right spine as the path from the root to the rightmost node in the tree. What join’(T;, T,) does
is to interleave pieces of the left spine of T; with pieces the right spine of T,, where the size of each
piece depends on the priorities.

Theorem 2.1. For treaps the cost of join(T;,m,T,) returning T and of split(T) is O(log|T|)
expected work and span.

Proof. The split operation only traverses the path from the root down to the node being split
at. The work and span are proportional to this path length. Since the expected depth of a node is
O(logn), the expected cost of split is O(logn). For join(T;,m, T,) the code only traverses the right
spine of T; or the left spine of T,. Therefore the work is at most proportional to the sum of the depth
of the rightmost key in T; and the depth of the leftmost key in T,. The work of join is therefore the
sum of the expected depth of these nodes which is expected O(log|T|). O

We note that these bounds for split and join also give us the worst-case expected O(mlog(n/m))
work bounds for union and related functions in expectation.

2.1 Expected span of quicksort and height of treaps

Even though the expected depth of a node in a treap is O(log n), it does not tell us what the expected
height of a treap is. The reason is, the height of a treap is the same as the depth of the node with
maximum depth. As you have saw in lecture 13, E [max;{A;}] # max;{E [A;]}. We use a similar
analysis used to analyze the work of SmallestK to find the expected span of quicksort and the
expected height of treaps.

Recall that in randomized quicksort, at each recursive call, we partition the input sequence S of
length n into three subsequences L, E, and R, such that elements in the subsequences are less than,
equal, and greater than the pivot, respectfully. Let X,, = max{|L|, |R|}, which is the size of larger
subsequence; The span of quicksort is determined by the sizes of these larger subsequences. For ease
of analysis, we will assume that |E| = 0, as more equal elements will only decrease the span. As this
partitioning uses filter we have the following recurrence for span:

S(n)=S(X,)+ 0O(logn)
Let S(n) denote E [S(n)]. As we did for SmallestK we will bound S(n) by considering the

Pr [X, <3n/4] and Pr [X, > 3n/4] and use the maximum sizes in the recurrence to upper bound
E [S(n)]. Now, the Pr [ X, < 3n/4] = 1/2, since half of the randomly chosen pivots results in the
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larger partition to be at most 3n/4 elements: Any pivot in the range T, /4 to T3, /4 will do, where T is
the sorted input sequence.

So then, by the definition of expectation, we have
S(n) =< ZPr [X,=i]-S(i)+clogn
i

<Pr [Xn < %”] §(374”)+Pr [Xn > 374”] S(n)+c-logn
< %g(%")—l— %g(n)—l—c-logn
= (1- %)g(n) < %5(%") +clogn

= S(n) < 5(%") + 2clogn,

which we know is a balanced cost tree and solves to O(log® n).

That is, with probability 1/2 we will be lucky and the subproblem size will go down by at least
3n/4 and with probability 1/2 we will be unlucky and we have to start again. In the end, the expected
span is twice what it would be if we could guarantee partition sizes of n/4 and 3n/4.

The analysis for the expected height of a treap is almost the same. But this time L and R represent
the nodes to the left and the right of the root, the element with the maximum priority. The height
of the whole treap is the depth of the node with maximum depth. It is not hard to show, this node
will be in the root’s subtree of maximum size, and the depth of this node is 1 plus its depth in this
subtree. Again, let X,, = max{|L|, |R|}. We get the following recurrence for the height H of the treap.

D(n)=H(X,)+1,
and the expected depth H is
H(n)=<) Pr[X,=i] -H(i)+1

<Pr [Xn < 317”] H(3n/4) + Pr [Xn > %7"] H(n)+1
< 1H(3n/4)+ JH(n)+1
= H(n) < H(3n/4)+2=0(logn)

Thus, the expected height of a treap is O(logn). It turns out that is possible to say something
stronger: For a Treap with n keys, the probability that any key is deeper than 101lnn is at most 1/n".
That is, for large n a treap with random priorities has height O(log n) with high probability. Since the
recursion tree for quicksort has the same distribution as a treap, this also gives the same bounds for
the depth of recursion of quicksort.

Being able to put high probability bounds on the runtime of an algorithm can be critical in some
situations. For example, suppose my company DontCrash is selling you a new air traffic control system
and I say that in expectation, no two planes will get closer than 500 meters of each other—would you
be satisfied? More relevant to this class, let’s say you wanted to run 1000 jobs on 1000 processors

!The bound base on Chernoff bounds which relies on events being independent.
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and I told you that in expectation each finishes in an hour—would you be happy? How long might
you have to wait?

There are two problems with expectations, at least on their own. Firstly, they tell us very little if
anything about the variance. And secondly, as mentioned in an earlier lecture, the expectation of a
maximum can be much higher than the maximum of expectations. The first has implications in real
time systems where we need to get things done in time, and the second in getting efficient parallel
algorithms (e.g., span is the max span of the two parallel calls). Proving these high probability
bounds is beyond the scope of this course.

3 Ordered Sets and Tables

The set and table interfaces described so far do not give any operations that make use of the ordering
of the elements, which allows them to be defined on types that don’t have a natural ordering. These
interfaces are also well suited for an implementation based on hash tables. In many applications,
however, it is useful to take advantage of the order of the keys. For example in a database one might
want to find all the customers who spent between $50 and $100, all emails in the week of Aug 22, or
the last stock transaction before noon on October 11th. Here we assume the data is organized by
transaction value, date or any other ordered key.

For these purposes we can extend the operations on sets and tables with some additional
operations that take advantage of ordering. Here we will just describe the operations on ordered sets.
The operations on ordered tables are completely analogous.

Definition 3.1. For a totally ordered universe of elements U (e.g. the integers or strings), the Ordered
Set abstract data type is a type S representing the powerset of U (i.e., all subsets of U) along with the
following functions:

all operations supported by the Set ADT, and

last(S) : S—>U = max$S
first(S) 1 S—»U = minS
split(S,k) : SXxU—>Sxbool xS = aswith trees
join(Sy,S,) : SxS—>S = as with trees

getRange(S,ki,ky) @ SxUxU—S = {keS|k <k<ky}
Note that split and join are the same as the operations we defined for binary search trees.
Here, however, we are abstracting the notion to ordered sets.

If we implement an Ordered Set using trees, then we can use the tree implementations of split
and join directly. Implementing first is straightforward since it only requires traversing the tree
down the left branches until a left branch is empty. Similarly 1ast need only traverse right branches.
The getRange operation can easily be implemented with two calls to split.

4 Augmenting Balanced Trees

Often it is useful to include additional information beyond the key and associated value in a tree. In
particular the additional information can help us efficiently implement additional operations. Here
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we will consider the first of two examples: (1) locating positions within an ordered set or ordered
table, and (2) keeping “reduced” values in an ordered or unordered table. Later we will consider the
second example.

4.1 Tracking Sizes and Locating Positions

Let’s say that we are using binary search trees (BSTs) to implement ordered sets and that in addition
to the operations already described, we also want to efficiently support the following operations:

rank(S, k) : SxU-—int = [{K'eS|K <k}|
select(S,i) : Sxint—U = ksuchthat |{k'eS|k' <k}|=i
splitIdx(S,i) : Sxint—-SxS = ({keS|k<select(S,i)},

{ke S|k >select(S,i)})

In the previous lectures the only things we stored at the nodes of a tree were the left and
right children, the key and value, and perhaps some balance information. With just this information
implementing the select and splitIdx operations requires visiting all nodes before the i‘" location
to count them up. There is no way to know the size of a subtree without visiting it. Similarly, rank
requires visiting all nodes before k. Therefore all these operations will take ©(|S|) work. In fact even
implementing size(S) requires O(|S|) work.

To fix this problem we can add to each node an additional field that specifies the size of the
subtree. Clearly this makes the size operation fast, but what about the other operations? Well it
turns out it allows us to implement select, rank, and splitIdx all in O(d) work assuming the
tree has depth d. Therefore for balanced trees the work will be O(log|S|). Lets consider how to
implement select:

fun select(T,i)=
case expose(T) of

NONE = raise Range

| SOME(L,R,k) =
case compare(i,sizelL) of

LESS = select(L,i)

| EQUAL = k
| GREATER = select(R,i—(sizel)—1)

OO U1 hWDN

To implement rank we could simply do a split and then check the size of the left tree. The
implementation of splitIdx is similar to split except when deciding which branch to take, base
it on the sizes instead of the keys. In fact with splitIdx we don’t even need select, we could
implement it as a splitIdx followed by a first on the right tree.

We can implement sequences using a balanced tree and this approach.
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