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Today:
- Quicksort and Binary Search Trees
- Work Analysis of Randomized Quicksort
- Treaps

1 Today

Today we will be introducing a balanced binary search tree that is closely related to randomized
quicksort. First we will look at the connection between quicksort and binary search trees, and then
we will consider the worst-case expected work of randomized quicksort. Finally, we will give the
definition of a binary search tree that uses randomization to maintain balance.

2 Quick Review: Binary Search Trees

For a quick recap, recall that in the last lecture, we were talking about binary search trees. In
particular, we looked at the following:

• Many ways to keep a search tree almost balanced. Such trees include red-black trees, 2-3 trees,
B-trees, AVL trees, Splay trees, Treaps, weight balanced trees, skip trees, among others.

Some of these are binary, some are not. In general, a node with k children will hold k− 1 keys.
But in this course, we will restrict ourselves to binary search trees.

• Using split and join to implement other operations. The split and join operations can be
used to implement most other operations on binary search trees, including: search, insert,
delete, union, intersection and difference.

• An implementation of split and join on unbalanced trees. We claim that the same idea can
also be easily implemented on just about any of the balanced trees.

3 Quicksort and BSTs

Can we think of binary search trees in terms of an algorithm we already know? As is turns out, the
quicksort algorithm and binary search trees are closely related: if we write out the function-call tree
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for quicksort and annotate each node with the pivot it picks, what we get is a BST. Conversely, if we
pick the pivot according to a BST, the function-call tree for quicksort will be that BST.

Let’s look at this in more detail. Consider the following implementation of quicksort. In this
implementation, we intentionally leave the pivot-choosing step unspecified because the property we
are discussing holds regardless of the choice of the pivot.

1 fun quicksort(S) =
2 if |S|= 0 then S
3 else let
4 val p = pick a pivot from S
5 val S1 =




s ∈ S | s < p
�

6 val S2 =



s ∈ S | s = p
�

7 val S3 =



s ∈ S | s > p
�

8 in
9 quicksort(S1) @ S2 @ quicksort(S3)

10 end

Let’s try to convince ourselves that the function-call tree for quicksort is a binary search tree. To do
this, we’ll modify the quicksort code to produce the tree as we just described:

1 fun qs_tree(S) =
2 if |S|= 0 then LEAF
3 else let
4 val p = pick a pivot from S
5 val S1 =




s ∈ S | s < p
�

6 val S2 =



s ∈ S | s = p
�

7 val S3 =



s ∈ S | s > p
�

8 in
9 NODE(qs_tree(S1), p,qs_tree(S3))

10 end

Notice that this is clearly a binary tree. To show that this is a binary search tree, we only have to
worry about the ordering invariant. But this, too, is easy to see: for qs_tree call, we compute S1,
whose elements are strictly smaller than p—and S2, whose elements are strictly bigger than p. So,
the tree we construct has the ordering invariant. In fact, this is an algorithm that converts a sequence
into a binary search tree.

The next question to ask is: How does the pivot choice effect the costs of quicksort and the quality of
the BST? A reasonable question to start is how deep this tree is. If the tree is about O(log n) deep,
then it must be a reasonably balanced tree. In addition, the sum the depths of all the nodes in the
tree is the same as the number of comparisons in quicksort. So then, what determines the depth of
the nodes in the tree? As we discussed already, the depth of the BST is the same as the depth of the
recursion tree for quicksort, so the choice of pivots determines the depth of the BST. Let’s consider
some strategies for picking a pivot:

• Always pick the first element: If the sequence is sorted in increasing order, then picking the first
element is the same as picking the smallest element. We end up with a lopsided tree. In fact,
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each node only has a right child (and no left child). This is a linked-list, and the work to create
this tree is the same as appending one element at a time to a linked list, O(n2). Similarly, if the
sequence is sorted in decreasing order, each node in the tree has only a left child and no right
child. In practice, it is not uncommon for a sort function input to be a sequence that is already
sorted or nearly sorted.

• Pick the median of three elements: Another strategy is to take the first, middle, and the last
elements and pick the median of them. For sorted lists the split is even, so each side contains
half of the original size and the depth of the tree is O(log n). Although this strategy avoids the
pitfall with sorted sequences, it is still possible to be unlucky, and in the worst-case the costs
and tree depth are the same as the first strategy.

• Pick an element randomly: It is not immediately clear what the depth of this is, but intuitively,
when we choose a random pivot, the size of each side is not far from n/2 in expectation. This
doesn’t give us a proof but it gives us hopes that this strategy will result in a tree of depth
O(log n) in expectation. Indeed, picking a random pivot gives us expected O(n log n) work and
O(log2 n) span for quicksort and an expected O(log n)-depth tree, as we will show.

Next we look at the expected work for randomized quicksort on all inputs, and from there
conclude that the non-randomized quicksort has same work when averaged over all inputs.

4 Expected work for randomized quicksort

As discussed above, if we always pick the first element then the worst-case work is O(n2), for example
when the array is already sorted. The expected work, though, is O(n log n) as we will prove below.
That is, the work averaged over all possible input ordering is O(n log n). In other words, on most
input this naive version of quicksort works well on average, but can be slow on some (common)
inputs.

On the other hand, if we choose an element randomly to be the pivot, the expected worst-case
work is O(n log n). That is, for input in any order, the expected work is O(n log n): No input has
expected O(n2) work. But with a very small probability we can be unlucky, and the random pivots
result in unbalanced partitions and the work is O(n2).

For the analysis of randomized quicksort, we’ll consider a completely equivalent algorithm that
will be slightly easier to analyze. Before the start of the algorithm, we’ll pick for each element
a random priority uniformly at random from the real interval [0,1]—and in Line 4 in the above
algorithm, we’ll instead pick the key with the highest priority. Notice that once the priorities are
decided, the algorithm is completely deterministic; you should convince yourself that the two
presentations of randomized quicksort are fully equivalent (modulo the technical details about how
we might store the priority values).

We’re interested in counting how many comparisons quicksort makes. This immediately
bounds the work for the algorithm because this is where the bulk of work is done. That is, if we let

Xn = # of comparisions quicksort makes on input of size n,
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our goal is to find an upper bound on E
�

Xn
�

for any input sequence S. For this, we’ll consider the
final sorted order1 of the keys T = sort(S). In this terminology, we’ll also denote by pi the priority
we chose for the element Ti .

We’ll derive an expression for Xn by breaking it up into a bunch of random variables and bound
them. Consider two positions i, j ∈ {1, . . . , n} in the sequence T . We use the random indicator
variables Ai j to indicate whether we compare the elements Ti and T j during the algorithm—i.e., the
variable will take on the value 1 if they are compared and 0 otherwise.

The crux of the matter is in describing the event Ai j = 1 in terms of a simple event that we have a
handle on. Before we prove any concrete result, let’s take a closer look at the quicksort algorithm
to gather some intutions. Notice that the top level takes as its pivot p the element with highest
priority. Then, it splits the sequence into two parts, one with keys larger than p and the other with
keys smaller than p. For each of these parts, we run quicksort recursively; therefore, inside it, the
algorithm will pick the highest priority element as the pivot, which is then used to split the sequence
further.

For any one call to quicksort there are three possibilities for Ai j , where i < j:

• The pivot (highest priority element) is either Ti or T j, in which case Ti and T j are compared
and Ai j = 1.

• The pivot is element between Ti and T j , in which case Ti is in S1 and T j is in S3 and Ti and T j
will never be compared and Ai j = 0.

• The pivot is less than Ti or greater than T j . Then Ti and T j are either both in S1 or both in S3,
respectively. Whether Ti and T j are compared will be determined in some later recursive call
to quicksort.

In the first case above, when two elements are compared, the non-pivot element is part of S1,
S2, or S3—but the pivot element is part of S2, on which we don’t recurse. This gives the following
observation:

Observation 4.1. If two elements are compared in a quicksort call, they will never be compared
again in other call.

Also notice in the corresponding BST, when two elements are compared, the pivot element
become the root of two subtrees, one of which contains the other element.

Observation 4.2. In the quicksort algorithm, two elements are compared in a quicksort call if and
only if one element is an ancestor of the other in the corresponding BST.

Therefore, with these random variables, we can express the total comparsion count Xn as follows:

Xn ≤ 3
n
∑

i=1

n
∑

j=i+1

Ai j

The constant 3 is because our not-so-optimized quicksort compares each element to a pivot 3 times.
By linearity of expectation, we have E

�

Xn
�

≤ 3
∑n

i=1

∑n
j=i+1 E

�

Ai j

�

. Furthermore, since each Ai j is

1Formally, there’s a permutation π: {1, . . . , n} → {1, . . . , n} between the positions of S and T .
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an indicator random variable, E
�

Ai j

�

= Pr
�

Ai j = 1
�

. Our task therefore comes down to computing

the probability that Ti and T j are compared (i.e., Pr
�

Ai j = 1
�

) and working out the sum.

Computing the probability Pr
�

Ai j = 1
�

. Let us first consider the first two cases when the pivot is
one of Ti , Ti+1, ..., T j . With this view, the following observation is not hard to see:

Claim 4.3. For i < j, Ti and T j are compared if and only if pi or p j has the highest priority among
{pi , pi+1, . . . , p j}.

Proof. We’ll show this by contradition. Asssume there is a key Tk, i < k < j with a higher priority
between them. In any collection of keys that include Ti and T j , Tk will become a pivot before either of
them. Since Tk “sits” between Ti and Tk (i.e., Ti ≤ Tk ≤ T j) , it will separate Ti and T j into different
buckets, so they are never compared.

Therefore, for Ti and T j to be compared, pi or p j has to be bigger than all the priorities in
between. Since there are j − i+ 1 possible keys in between (including both i and j) and each has
equal probability of being the highest, the probability that either i or j is the greatest is 2/( j− i + 1).
Therefore,

E
�

Ai, j

�

= Pr
�

Ai, j = 1
�

= Pr
�

pi or p j is the maximum among {pi , . . . , p j}
�

=
2

j− i+ 1
.

Notice that element Ti is compared to Ti+1 with probability 1. It is easy to understand why if
we consider the corresponding BST. One of Ti and Ti+1 must be an ancestor of the other in the BST:
There is no element that could be the root of a subtree that has Ti in its left subtree and Ti+1 in its
right subtree. On the other hand, if we consider Ti and Ti+2 there could be such an element, namely
Ti+1, which could have Ti in its left subtree and Ti+2 in its right subtree. That is, with probability 1/3,
Ti+1 has the highest probability of the three and Ti is not compared to Ti+2, and with probability 2/3
one of Ti and Ti+2 has the highest probability and, the two are compared. In general, the probability
of two elements being compared is inversely proportional to the number of elements between them
when sorted. The further apart the less likely they will be compared. Analogously, the further apart
the less likely one will be the ancestor of the other in the related BST.
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Hence, the expected number of comparisons made in randomized quicksort is

E
�

Xn
�

≤ 3
n
∑

i=1

n
∑

j=i+1

E
�

Ai j

�

= 3
n
∑

i=1

n
∑

j=i+1

2

j− i+ 1

= 3
n
∑

i=1

n−i+1
∑

k=2

2

k

≤ 6
n
∑

i=1

Hn

= 6nHn ∈ O(n log n)

Because we can use the random priorities to shuffle the input so that the priorities are in
decreasing order and then call the non-randomized quicksort, we have also shown the average
work for the basic quicksort is also O(n log n). That is, the expected work for the basic quicksort is
O(n log n) when averaged over all permutations of the input.

5 Treaps

So far, we know that whatever the pivot strategy is, the resulting function-call tree for quicksort has
the same depth as the BST constructed using that strategy. As we will show picking a pivot at random
gives us a BST that is only O(log n) deep in expectation. Can we maintain a tree data structure that
centers on this random pivot-selection idea? If so, we automatically get a nice BST.

Unlike quicksort, when building a BST we don’t necessarily know all the elements that will be in
the BST at the start. But we can use the random priority idea in the analysis of quicksort to get the
same BST that randomized quicksort would build.

A Treap (tree + heap) is a randomized BST that maintains balance in a probabilistic way. In a
Treap, a random priority is assigned to every key. In practice, this is often done by performing a hash
on a key, or by assigning a different random number to each key. We will assume that each priority is
unique although it is possible to remove this assumption.

The nodes in a Treap must satisfy two properties:

BST Property: Their keys satisfy the BST property (i.e., keys are stored in-order in the tree).

Heap Property: The associated priorities satisfy the heap property. The (max) heap property requires
for every node that the value at a node is greater than the value of its two children.

In quick sort terminology, what the heap property says is that we are going to pick a pivot at
random from the set of keys. This is because we have random priorities on the keys and the heap
property says that the pivot (the root of that subtree) is the key with the highest priority.

Consider the following key-priority pairs:
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(a,3), (b,9), (c, 2), (e,6), (f, 5)

These elements would be placed in the following treap.

(b,9)

(a,3) (e,6)

(c,2) (f,5)

Theorem 5.1. For any set S of key-value pairs, there is exactly one treap T containing the key-value
pairs in S which satisfies the treap properties.

Proof. The key k with the highest priority in S must be the root node, since otherwise the tree would
not be in heap order. Then, to satisfy the property that the treap is ordered with respect to the nodes’
keys, all keys in S less than k must be in the left subtree, and all keys greater than k must be in the
right subtree. Inductively, the two subtrees of k must be constructed in the same manner.

We claim that the split code given in the last lecture for unbalanced trees doesn’t need to be
modified at all for Treaps.

Exercise 1. Convince yourselves than when doing a split none of the priority orders change (i.e. the
code will never put a larger priority below a smaller priority).
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