
Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Spring 2012)

Lecture 10 — Shortest Weighted Paths I

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012)

Lectured by Margaret Reid-Miller — 16 February 2012

Today:
- Representing Graphs with Arrays
- Weighted Graphs
- Priority First Search
- Shortest Weighted Paths

1 Representing Graphs With Arrays

When graphs are implemented using tables and sets, the cost of finding and updating a vertex in the
table is (logn) work and span. We can improve the asymptotic performance of certain algorithms if
these operations are constant work. An array is an obvious data structure that has constant lookup,
but in a functional setting the cost of changing a value in the array requires copying the whole area
in order to maintain data persistency.

Single-threaded sequences introduce in the previous lecture supported constant-work for each
lookup and element update, as long as the operations always occurred on the most recent version
of the sequence. Although the costs of these operations can be greater when applied to an earlier
version of a sequence, the operations still work correctly. But, as single-threaded sequences use
mutation, they appears functional only to a sequential observer and are unsafe for parallel observers.
They include, however, a parallel update operation inject, so we can still get parallel performance.

To take advantage of array’s faster access and update, we can use sequences to represent graphs.
But the cost is that this representation is less general, requiring the names of vertices to be restricted to
integers in a fixed range. This restriction can become inconvenient in graphs that change dynamically
but is typically fine for static graphs.

We refer to a graph G = (V, E) where V = {0,1, . . . , n− 1} as an integer labeled (IL) graph. For
such an IL graph, an α vertexTable can be represented as a sequence of length n with the values
stored at the appropriate indices. In particular, the table

{(0 7→ a0), (1 7→ a1), · · · , (n− 1 7→ an−1)}

is equivalent to the sequence
〈a0, a1, · · · , an−1〉 ,

using standard reductions between sequences and sets. If we use an array representation of sequences,
then this gives us constant work access to the values stored at vertices. We can also represent the set

†Lecture notes by Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.

1 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Spring 2012)

of neighbors of a vertex as an integer sequence containing the indices of those neighbors. Therefore,
instead of using an set table to represent a graph we can use a

(int seq) seq,

For example, the following undirected graph:

0

1

2

3

would be represented as
G = 〈〈1,2〉, 〈0,2, 3〉, 〈0, 1〉, 〈1〉〉.

Let’s consider how this affects the cost of BFS. We consider the version of BFS that returns a map-
ping from each vertex to its parent in the BFS tree. We represent the IL graph as a (int seq) seq.
Notice that the graph itself does not use stseq, as we do not change the graph. Maintaining the set
of encountered vertices, however, does change during the course of the algorithm. Therefore, we will
use an (int option) stseq to represent these encountered vertices. The option is NONE if the
vertex has not been encountered, and SOME(v) if it has been encountered. Each time we encounter a
vertex, we map it to its parent in the BFS tree; the value v in SOME(v) is its parent vertex. Since the
final result of this sequence is the maps each vertex to its parent in the BFS tree, we refer to it as P
instead of X . As the updates to this sequence are potentially small compared to its length, using an
stseq is efficient. On the other hand, because the set of frontier vertices is new at each level, we can
represent the frontier simply as an integer sequence containing all the vertices in the frontier.

Then the algorithm is:

1 fun BFS(G : (int seq) seq, s : int) =
2 let
3 fun BFS′(P : int option stseq, F : int seq) =
4 if |F |= 0 then toSeq(P)
5 else
6 let val N = flatten〈〈(u, v) : u ∈ G[v]〉 : v ∈ F〉 % neighbor edges of frontier
7 val P ′ = inject(N , P) % new parents added
8 val F ′ = 〈u : (u, v) ∈ N ∧ P ′[u] = v〉 % remove duplicates
9 in BFS′(P ′, F ′) end

10 val Pini t = 〈if (v = s) then SOME(s) else NONE
11 : v ∈ 〈0, . . . , |G| − 1〉〉
12 in BFS′(toSTSeq(Pini t), 〈s〉)
13 end

All the work is done in lines 6, 7, and 8. Also note that the 7 on line 7 is always applied to the
most recent version. We can write out the following table of costs:

2 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Spring 2012)

P : stseq P : seq
line work span work span
6 O(
∑

v∈Fi
|NG(v)|) O(d log n) O(

∑

v∈F |NG(v)|) O(log n)
7 O(
∑

v∈Fi
|NG(v)|) O() O(n) O(1)

8 O(
∑

v∈Fi
|NG(v)|) O(log n) O(

∑

v∈F |NG(v)|) O(log n)
total across
all d rounds

O(m) O(d log n) O(m+ nd) O(d log n)

where d is the number of rounds (i.e. the longest path length from s to any other reachable vertex).
Note that the total across rounds is calculated using the fact that every vertex appears in a frontier at
most once so that

d
∑

i=0

∑

v∈Fi

|NG(v)| ≤ |E|= m.

We can do a similar transformation to DFS. Here is our previous version.

1 fun DFS(G : set table, s : key) =
2 let fun DFS′(X : set, v : key) =
3 if (v ∈ X) then X
4 else iterate DFS′ (X ∪ {v}) (Gv)
5 in DFS′({}, s) end

And the version using sequences.

1 fun DFS(G : (int seq) seq, s : int) =
2 let
3 fun DFS′(X : bool stseq, v : int) =
4 if (X [v]) then X
5 else iterate DFS′ (update(X , v,true)) (G[v])
6 val X ini t = 〈false : v ∈ 〈0, . . . , |G| − 1〉〉
7 in DFS′(X ini t , s) end

If we use an stseq for X (as indicated in the code) then this algorithm uses O(m) work and span.
However if we use a regular sequence, it requires O(n2) work and O(m) span.

2 Weighted Graph Representation

There are a number of ways to represent weights in a graph. More generally, we might want to
associate any sort of value with the edges. That is, we have a “label” function of type w : E→ label
where label is the type of the label.

The first representation we consider translates directly from viewing edge labels as a function.
We keep a table that maps each edge (a pair of vertex identifiers) to its label (or weight). This would
have type

(label vertexVertexTable)

3 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Spring 2012)

That is, the keys are pairs of vertices (hence vertexVertexTable), and the values are labels.

Another way to associate values with edges is to use a structure similar to the adjacency set
representation for unweighted graphs and to piggyback labels on top of it. In particular, instead of
associating a set of neighbors with each vertex, we can have a table of neighbors that maps each
neighbor to its label (or weight). It would have type:

(label vertexTable) vertexTable.

3 Priority First Search

Generalizing BFS and DFS, priority first search visits the vertices in some priority order. This priority
order can either be static and decided ahead of time, or can be generated on the fly by the algorithm.
To apply priority first search, we only need to make sure that at every step, we have a priority value
for all the unvisited vertices adjacent to the visited vertices. This allows us to pick the best (highest
priority) among them. When we visit a vertex, we might update the priorities of the remaining
vertices. One could imagine using such a scheme for exploring the web so that the more interesting
part can be explored without visiting the whole web. The idea might be to rank the outgoing links
based on how interesting the tag on the link appears to be. Then, when choosing what link to visit
next, choose the best one. This link might not be from the page you are currently on.

Many famous graph algorithms are instances of priority first search. For example, Dijkstra’s
algorithm for finding single-source shortest paths (SSSP) from a single source on a weighted graph
and Prim’s algorithm for finding Minimum Spanning Trees (MST).

3.1 Shortest Weighted Paths

The single-source shortest path (SPPP) problem is to find the shortest (weighted) path from a source
vertex s to every other vertex in the graph. We’ll need a few definitions to describe the problem more
formally. Consider a graph (either directed or undirected) graph G = (V, E). A weighted graph is a
graph G = (V, E) along with a weight function w : E→ R that associates with every edge a real-valued
weight. Thus, the weight of a path is the sum of the weights of the edges along that path.

Problem 3.1 (The Single-Source Shortest Path (SSSP) Problem). Given a weighted graph G = (V, E)
and a source vertex s, the single-source shortest path (SSSP) problem is to find the shortest weighted
path from s to every other vertex in V .

We will use δG(u, v) to indicate the weight of the shortest path from u to v in the weighted graph
G. Dijkstra’s algorithm solves the SSSP problem when all the weights on the edges are non-negative.
Dijkstra’s is a very important algorithm both because shortest paths have many applications but also
because it is a very elegant example of an efficient greedy algorithm that generates optimal solutions
on a nontrivial task.

Before describing Dijkstra’s algorithm, we would like to understand why we need a new algorithm
for the weighted case. Why, in particular, doesn’t BFS work on weighted graphs? Consider the
following directed graphs on 3 nodes:

4 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Spring 2012)

1 1

3

s
a b

In this example, BFS would visit b then a. This means when we visit b, we assign it an incorrect
weight of 3. Since BFS never visit it again, we’ll never update it to the correct value. Note that we
cannot afford to visit it again as it will be much more expensive. This problem still persists even if
the graph is geometric (and satisfies the triangle inequality), as the following example shows:

s

a b

c

d

1
1

1

22

But why does BFS work in unweighted case? The key idea is that it works outwards from the
source. For each frontier Fi , it has the correct unweighted distance from source to each vertex in the
frontier. It then can determine the correct distance for unencountered neighbors that are distance
one further away (on the next frontier).

Let’s consider using a similar approach when the graphs has non-negative edge weights. Starting
from the source vertex s, for which vertex can we safely say we know its shortest path from s? The
vertex v that is the closest neighbor of s. There could not be a shorter path to v, since such a path
would have to go through one of the neighbors that is further away from s and that path cannot get
shorter because none of the edge weights are shorter. More generally, if we know the shortest path
distances for a set of vertices, how can we determine the shortest path to another vertex?

Let’s think inductively. Consider the vertices sorted by their shortest path distance from s. That
is, let X = 〈v1, v2,vn〉 be the vertices in G(V, E) sorted by δ(s, vi). Now suppose you have found
δ(s, vi) for the first k vertices. That is, we know δ(s, vi) for the subset Xk = 〈v1, v2,vk〉. How do
you know which vertex is vk+1, and how can you find δ(s, vk+1? It must be the vertex that is not in
Xk but is the next closest to s.

What do we know about the shortest path from s to vk+1? Suppose the vertex u is the node just
before vk+1 in the shortest path from s to vk+1. Since all the edge weights are non-negative, u must
be closer or at least as close to s as vk+1 is. Therefore u must be in Xk because otherwise vk+1 could
not be closest vertex outside Xk. Then it must be the case that vk+1 is a neighbor of the set Xk. That
is, the shortest path from s to vk+1 is a known shortest path extended by a single edge.

Next time we will consider how we can find vk+1 efficiently and give the complete algorithm.

5 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Spring 2012)

4 SML code

Here we present the SML code for BFS using sequences.

functor SeqBFS(STSeq : ST_SEQUENCE) =
struct
open STSeq
type vertex = int
type graph = (int seq) seq

fun N(G : graph , F : int seq) =
let
fun UV v = Seq.map (fn u => (u, SOME(v))) (Seq.nth G v)

in
Seq.flatten(Seq.map UV F)

end

fun BFS(G : graph , s : vertex) =
let
val n = Seq.length G

fun BFS’(P : int option stseq, F : int seq) =
if (Seq.length(F) = 0)
then toSeq(P)
else let

val Nbr = Seq.filter (fn (u,v) => (nth P u) = NONE) (N(G, F))
val P’ = inject Nbr P
val F’ = Seq.filter (fn (u,v) => (nth P’ u) = v) Nbr
val F” = Seq.map (fn (u,v) => u) F’

in BFS’(P’, F”) end

val P = Seq.tabulate (fn i => if (i=s) then SOME(s) else NONE) n

in
BFS’(fromSeq(P), Seq.singleton(s))

end

end

6 Version 1.0

	Representing Graphs With Arrays
	Weighted Graph Representation
	Priority First Search
	Shortest Weighted Paths

	SML code

