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Material in this lecture: Today’s lecture is about reduction.
- Reduction
- Genome sequencing, or actually finding shortest superstring.
- (Asymmetric) Traveling Salesperson
- Graphs

1 Reduction: How to Deligate Your Work

Often, the easiest way to solve a problem is to make someone else do it for you. This is the key idea
behind reduction techniques. More seriously, if we want to solve a problem A, we could reduce the
problem—i.e., we repackage it—to another problem B with hopes that we have known algorithms
for B or it is easier to reason about B. The challenge is usually in recognizing similarities between
problems that on the surface seem very different—and being able to come up with the translation.
This will come with practice.

Problem A Problem B

"repackage"

"translate"

You probably have encountered this simple but powerful idea in many places already.

Example I: In the MCSS problem, we’re given a sequence S of numbers, find a contiguous subse-
quence of S that has the largest sum. We said

mcss(S) =max
j

�

X j −min
i≤ j

X i

�

,

where the X j are the partial sums of S (i.e., X j = sum j
i=1Si). But it is not hard to see that

max
j

�

X j −min
i≤ j

X i

�

=max
j≥i
{X j − X i},

which is exactly the stocks market problem. Therefore, we can use stocks to solve MCSS:

†Lecture notes by Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.
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fun mcss S =
let val X = scan_incl plus 0 S <--- repackaing
in case (stocks X)

of JUMP(x) => x <--- translation
| _ => 0

end

Example II: We sometimes want to show that a problem is not easy. One way of doing it is to show
that it is as hard as some other problem. If that problem is known to be hard, then we can conclude
that our problem, too, is hard. More concretely, to prove that A is hard: Say we know that B is super
hard (e.g., NP-hard). If we could reduce it to A (i.e. you could both repackage it and translate it back
fast, say O(n) cost), then, it must be the case A is hard, too. We’re going to see more of these soon
when we talk about lower bounds.

Let’s look at a more sophisticated example.

2 Sequencing the Genome

Sequencing of a complete human genome represents one of the greatest scientific achievements of
the century. It is also one of the most important contributions of algorithms to date. For a brief
history, the efforts started a few decades ago with the following major landmarks:

1996 sequencing of first living species
2001 draft sequence of the human genome
2007 full human genome diploid sequence

Interestingly, all these achievements rely on efficient parallel algorithms. In this lecture, we will
take a look at some algorithms behind the recent results—and the power of problem abstraction
which will reveal surprising connections between seemingly unrelated problems.

2.1 What makes sequencing the genome hard?

There is currently no way to read long strands with accuracy. Current DNA sequencing machines are
only capable of efficiently reading relatively short strands (e.g. 1000 base pairs). Therefore, we resort
to cutting strands into shorter fragments and then reassembling the pieces. The "primer walking"
process cuts the DNA strands into consecutive fragments. But the process is slow because you need
the result of one fragment to "build" in the wet lab the molecule needed to find the following fragment
(inherently sequential process). Alternatively, there are fast methods to cut the strand at random
positions. But this process mixes up the short fragments, so the order of the fragments is unknown.
For example, the strand cattaggagtat might turn into, say, ag, gag, catt, tat, destroying the original
ordering.

If we could make copies of the original sequence, is there something we could do differently to
order the pieces? Let’s look at the shotgun method, which according to Wikipedia is the de facto
standard for genome sequencing today. It works as follows:
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1. Take a DNA sequence and make multiple copies. For example, if we are cattaggagtat, we
produce many copies of it:

cattaggagtat
cattaggagtat
cattaggagtat

2. Randomly cut up the sequences using a “shotgun”, well, actually using radiation or chemicals.
For instance, we could get

catt ag gagtat

cat tagg ag tat

ca tta gga gtat

3. Sequence each of the short fragments, which can be done in parallel with multiple sequencing
machines.

4. Reconstruct the original genome from the fragments.

Steps 1–3 are done in a wet lab, and Step 4 is where algorithms come in. In Step 4, we want
to solve the following problem: Given a set of overlapping genome subsequences, construct the “best”
sequence that includes them all. But what notion of quality are we talking about? What does it mean
to be the “best” sequence? There are many possible candidates. Below is one way to define “best”
objectively.

Definition 2.1 (The Shortest Superstring (SS) Problem). Given an alphabet set Σ and a finite set
of finite, non-empty strings S ⊆ Σ+, the shortest superstring problem is find a shortest string r that
contains every s ∈ S as a substring of r.

Note that in this definition, we require each s ∈ S to appear as a contiguous block in r. That is,
“ag” is a substring of “ggag” but is not a substring of “attg”.

That is, given sequence fragments, construct a string that contains all the fragments and that
is the shortest string. The idea is that the simplest string is the best. Now that we have a concrete
specification of the problem, we are ready to look into algorithms for solving it.

For starters, let’s observe that we can ignore strings that are contained in other strings. That is,
for example, if we have gagtat, ag, and gt, we can throw out ag and gt. Continuing with the example
above, we are left with the following “snippets”

S =
n

tagg, catt, gga, tta, gagtat
o

.

Following this observation, we can assume that the “snippets” have been preprocessed so that
none of the strings are contained in other strings. (How fast can we do this?)
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2.2 Algorithm 1: Brute Force

The first algorithm we will look at is a brute force algorithm, because it tries all permutations of the
set of strings and for each permutation, we remove the maximum overlap between each adjacent
pair of strings. For example, the permutation

catt tta tagg gga gagtat

will give us cattaggagtat after removing the overlaps (the excised parts are underlined). Note that this
result happens to be the original string and also the shortest superstring.

Does trying all permutations always give us the shortest string? As our intuition might suggest, the
answer is yes and the proof of it, which we didn’t go over in class, hints at an algorithm that we will
look at in a moment.

Lemma 2.2. Given a finite set of finite strings S ⊆ Σ+, the brute force method finds the shortest
superstring.

Proof. Let r∗ be any shortest superstring of S. We know that each string s ∈ S appears in r∗. Let
is denote the beginning position in r∗ where s appears. Since we have eliminated duplicates,
it must be the case that all is ’s are distinct numbers. Now let’s look at all the strings in S,
s1, s2, . . . , s|S|, where we number them such that is1

< is2
< · · · < is|S| . It is not hard to see that

the ordering s1, s2, . . . , s|S| gives us r∗ after removing the overlaps.

The problem with this approach is that, although highly parallel, it has to examine a large number
of combinations, resulting in a super large work term. There are n! permutations on a collection of n
elements. This means that if the input consists of n = 100 strings, we’ll need to consider 100!≈ 10158

combinations, which for a sense of scale, is more than the number of atoms in the universe. As such,
the algorithm is not going to be feasible for large n.

Can we come up with a smarter algorithm that solves the problem faster? Unfortunately, it is
unlikely. As it happens, this problem is NP-hard. But we should not fear NP-hard problems. In general,
NP-hardness only suggests that there are families of instances on which the problem is hard in the
worst-case. It doesn’t rule out the possibility of algorithms that compute near optimal answers or
algorithms that perform well on real world instances.

For this particular problem, we know efficient approximation algorithms that (1) give theoretical
bounds that guarantee that the answer (i.e., the length) is within a constant factor of the optimal
answer, and (2) in practice do even better than the bounds suggest.

2.3 Algorithm 2: Reducing to Another Problem

We now consider converting the shortest superstring problem to another seemingly unrelated problem:
the traveling salesperson1 (TSP) problem. This is a canonical NP-hard problem dating back to the
1930s and has been extensively studied, e.g. see Figure 1. The two major variants of the problem

1This is formerly known as the traveling salesman problem.
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Figure 1: A poster from a contest run by Proctor and Gamble in 1962. The goal was to solve a 33 city
instance of the TSP. Gerald Thompson, a Carnegie Mellon professor, was one of the winners.

are symmetric TSP and asymmetric TSP, depending on whether the graph has undirected or directed
edges, respectively. The particular variant we’re reducing to is the asymmetric version, which can be
described as follows.

Definition 2.3 (The Asymmetric Traveling Salesperson (aTSP) Problem). Given a weighted directed
graph, find the shortest path that starts at a vertex s and visits all vertices exactly once before
returning to s.

That is, find a Hamiltonian cycle of the graph such that the sum of the edge weights along the
cycle is the minimum of all such cycles.

Motivated by the observation that the shortest superstring problem can be solved exactly by trying
all permutations, we’ll make the TSP problem try all the combinations for us. For this, we will set up
a graph so that each valid Hamiltonian cycle corresponds to a permutation. Note that in our case,
there is always a Hamiltonian cycle because the graph is a complete graph—there are two directed
edges between every pair of vertices.

Let overlap(si , s j) denote the maximum overlap for si followed by s j . This would mean overlap
(“tagg”,“gga”) = 2.

The Reduction. Now we build a directed graph D = (V, A).

• The vertex set V has one vertex per string and a special “source” vertex Λ where the cycle starts
and ends.

5 Version -100



Parallel and Sequential Data Structures and Algorithms — Lecture 6 15-210 (Spring 2012)

• The arc (directed edge) from si to s j has weight wi, j = |s j| − overlap(si , s j). This quantity
represents the increase in the string’s length if si is followed by s j. As an example, if we have
“tagg” followed by “gga”, then we can generate “tagga” which only adds 1 character—indeed,
|“gga”| − overlap(“tagg”, “gga”) = 3− 2= 1.

• The weights for arcs incident to Λ are set as follows: (Λ, si) = |si| and (si ,Λ) = 0. That is, if si
is the first string in the permutation, then the arc (Λ, si) pays for the whole length si .

To see this reduction in action, the input {catt, acat, tta} results in the following graph (not all
edges are shown).

catt

ttaacat

4

0

1 4

3

2

Λ

4 0

As intended, in this graph, a cycle through the graph that visits each vertex once corresponds
to a permutation in the brute force method. Furthermore, the sum of the edge weights in that
cycle is equal to the length of the superstring produced by the permutation. Since TSP considers all
Hamiltonian cycles, it also corresponds to considering all orderings in the brute force method. Since
the TSP finds the min cost cycle, and assuming the brute force method is correct, then TSP finds
the shortest superstring. Therefore, if we could solve TSP, we would be able to solve the shortest
superstring problem.

But TSP is also NP-hard. What we have accomplished so far is that we have reduced one NP hard
problem to another, but the advantage is that there is a lot known about TSP, so maybe this helps.

3 Graphs

As we just saw, graphs offer a great way of expressing relationships between pairs of items. Indeed,
graphs are one of the most important abstractions in the study of algorithms. A graph is also known
as a network. Graphs can be very important in modeling data, and a large number of problems can
be reduced to known graph problems. A graph consists of a set of vertices with connections between
them. Graphs can either be directed, with the directed edges (arcs) pointing from one vertex to
another, or undirected, with the edges symmetrically connecting vertices. Graphs can have weights
or other values associated with either the vertices and/or the edges.

For motivation, we’ll outline some of the many applications of graphs:

1. Road networks. Vertices are intersections and edges are the road segments between them. Such
networks are used by google maps, Bing maps and other map programs to find routes between
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locations. They are also used for studying traffic patterns. Algorithmic questions we’ll cover in
this class include TSP, reachability, and shortest paths.

2. Dependence graphs. Graphs can be used to represent dependences or precedences among items.
Such graphs are often used in large projects in laying out what components rely on other
components and used to minimize the total time or cost to completion while abiding by the
dependences.

3. Utility graphs. The power grid, the Internet, and the water network are all examples of
graphs where vertices represent connection points, and edges the wires or pipes between them.
Analyzing properties of these graphs is very important in understanding the reliability of such
utilities under failure or attack, or in minimizing the costs to build infrastructure that matches
required demands.

4. Document link graphs. The best known example is the link graph of the web, where each web
page is a vertex, and each hyperlink a directed edge. Link graphs are used, for example, to
analyze relevance of web pages, the best sources of information, and good link sites.

5. Protein-protein interactions graphs. Vertices represent proteins and edges represent interactions
between them that carry out some biological function in the cell. These graphs can be used, for
example, to study molecular pathways—chains of molecular interactions in a cellular process.
Humans have over 120K proteins with millions of interactions among them.

6. Neural networks. Vertices represent neurons and edges the synapses between them. Neural
networks are used to understand how our brain works and how connections change when we
learn. The human brain has about 1011 neurons and close to 1015 synapses.

7. Network traffic graphs. Vertices are IP (Internet protocol) addresses and edges are the packets
that flow between them. Such graphs are used for analyzing network security, studying the
spread of worms, and tracking criminal or non-criminal activity.

8. Social network graphs. Graphs that represent who knows whom, who communicates with
whom, who influences whom or other relationships in social structures. An example is the
twitter graph of who tweeted whom. These can be used to determine how information flows,
how topics become hot, how communities develop, or even who might be a good match for
who, or is that whom.

9. Graphs in quantum field theory. Vertices represent states of a quantum system and the edges
the transitions between them. The graphs can be used to analyze path integrals and summing
these up generates a quantum amplitude (yes, I have no idea what that means).

10. Semantic networks. Vertices represent words or concepts and edges represent the relationships
among the words or concepts. These have been used in various models of how humans organize
their knowledge, and how machines might simulate such an organization.

11. Scene graphs. In graphics and computer games scene graphs represent the logical or spacial
relationships between objects in a scene. Such graphs are very important in the computer
games industry.
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12. Finite element meshes. In engineering many simulations of physical systems, such as the flow of
air over a car or airplane wing, the spread of earthquakes through the ground, or the structural
vibrations of a building, involve partitioning space into discrete elements. The elements along
with the connections between adjacent elements forms a graph that is called a finite element
mesh.

13. Robot planning. Vertices represent states the robot can be in and the edges the possible
transitions between the states. This requires approximating continuous motion as a sequence
of discrete steps. Such graph plans are used, for example, in planning paths for autonomous
vehicles.

14. Graphs in epidemiology. Vertices represent individuals and directed edges the transfer of an
infectious disease from one individual to another. Analyzing such graphs has become an
important component in understanding and controlling the spread of diseases.

15. Graphs in compilers. Graphs are used extensively in compilers. They can be used for type
inference, for so called data flow analysis, register allocation and many other purposes. They
are also used in specialized compilers, such as query optimization in database languages.

16. Constraint graphs. Graphs are often used to represent constraints among items. For example
the GSM network for cell phones consists of a collection of overlapping cells. Any pair of cells
that overlap must operate at different frequencies. These constraints can be modeled as a graph
where the cells are vertices and edges are placed between cells that overlap.

There are many other applications of graphs.

3.1 Formalities

B

A

DC

An example of a directed graph on 4 vertices. An undirected graph on 4 vertices2

Formally, a directed graph or (digraph) is a pair G = (V, A) where

• V is a set of vertices (or nodes), and

• A⊆ V × V is a set of directed edges (or arcs).

Each arc is an ordered pair e = (u, v) and a graph can have self loops (u, u). Directed graphs represent
asymmetric relationships. An undirected graph is a pair G = (V, E) where E is a set of unordered pairs
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over V (i.e., E ⊆
�V

2

�

). Each edge can be written as e = {u, v}, which is the same as {v, u}, and self
loops are generally not allowed. Undirected graphs represent symmetric relationships.

Note that directed graphs are in some sense more general than undirected graphs since we can
easily represent an undirected graph by a directed graph by placing an arc in each direction. Indeed,
this is often the way we represent directed graphs in data structures.

Unfortunately, graphs come with a lot of terminology. Though, fortunately, most of it is intuitive
once we understand the concept. At this point, we will just talk about graphs that do not have any
data associated with edges, such as weights. We will later talk about weighted graphs.

• A vertex u is a neighbor of or equivalently adjacent to a vertex v if there is an edge between
them. For a directed graph we use the terms in-neighbor (if the arc points to u) and out-neighbor
(if the arc points from u).

• The degree of a vertex is its number of neighbors and will be denoted as dG(v). For directed
graphs we use in-degree (d−G (v)) and out-degree (d+G (v)) with the presumed meanings. We will
drop the subscript when it is clear from the context which graph we’re talking about.

• For an undirected graph G = (V, E), the neighborhood NG(v) of a vertex v ∈ V is its set of
neighbors, i.e. N(v) = {u | {u, v} ∈ E}. For a directed graph we use N+G (v) to indicate the set of
out-neighbors and N−G (v) to indicate the set of in-neighbors of v. If we use NG(v) for a directed
graph, we mean the out neighbors. The neighborhood of a set of vertices U ⊆ V is the union of
their neighborhoods, e.g. NG(V ) = ∪v∈V NG(v), or N+G (V ) = ∪v∈V N+G (v).

• A path in a graph is a sequence of adjacent vertices. More formally for a graph G = (V, E),
Paths(G) =

�

P ∈ V+ | 1≤ i < |P|, (Pi , Pi+1) ∈ E
	

is the set of all paths in G, where V+ indicates
all positive length sequences of vertices (allowing for repeats). The length of a path is one less
than the number of vertices in the path—i.e., it is the number of edges in the path.

• A vertex v is reachable from a vertex u in G if there is a path starting at v and ending at u in G.
An undirected graph is connected if all vertices are reachable from all other vertices. A directed
graph is strongly connected if all vertices are reachable from all other vertices.

• A simple path is a path with no repeated vertices. Often, however, the term simple is dropped,
making it sometimes unclear whether path means simple or not (sorry). In this course we will
almost exclusively be talking about simple paths and so unless stated otherwise our use of path
means simple path.

• A cycle is a path that starts and ends at the same vertex. In a directed graph a cycle can have
length 1 (i.e. a self loop). In an undirected graph we require that a cycle must have length at
least three. In particular going from v to u and back to v does not count. A simple cycle is a
cycle that has no repeated vertices other than the start vertex being the same as the end. In
this course we will exclusively talk about simple cycles and hence, as with paths, we will often
drop simple.

• An undirected graph with no cycles is a forest and if it is connected it is called a tree. A directed
graph is a forest (or tree) if when all edges are converted to undirected edges it is undirected
forest (or tree). A rooted tree is a tree with one vertex designated as the root. For a directed
graph the edges are typically all directed toward the root or away from the root.
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Truth in advertising. Often when abstracting a problem we can abstract away some key
aspects of the underlying application that we want to solve. Indeed this is the case when using
the Shortest Superstring problem for sequencing genomes. In actual genome sequencing there
are two shortcomings with using the SS problem. The first is that when reading the base pairs
using a DNA sequencer there can be errors. This means the overlaps on the strings that are
supposed to overlap perfectly might not. Don’t fret: this can be dealt with by generalizing
the Shortest Superstring problem to deal with approximate matching. Describing such a
generalization is beyond the scope of this course, but basically one can give a score to every
overlap and then pick the best one for each pair of fragments. The nice thing is that the same
algorithmic techniques we discussed for the SS problem still work for this generalization, only
the “overlap” scores will be different.

The second shortcoming of using the SS problem by itself is that real genomes have long repeated
sections, possibly much longer than the length of the fragments that are sequenced. The SS
problem does not deal well with such repeats. In fact when the SS problem is applied to the
fragments of an initial string with longer repeats that the fragment sizes, the repeats or parts
of them are removed. One method that researchers have used to deal with this problem is the
so-called double-barrel shotgun method. In this method strands of DNA are cut randomly into
lengths that are long enough to span the repeated sections. After cutting it up one can read just
the two ends of such a strand and also determine its length (approximately). By using the two
ends and knowing how far apart they are it is possible to build a “scaffolding” and recognize
repeats. This method can be used in conjunction with the generalization of the SS discussed in
the previous paragraph. In particular the SS method allowing for errors can be used to generate
strings up to the length of the repeats, and the double barreled method can put them together.

• For a graph G = (V, E) the (unweighted) shortest path length between two vertices is the mini-
mum length of a path between them : SPG(u, v) =min

¦

|P| | P ∈ Paths(G), P1 = u, P|P| = v
©

.

• The diameter of a graph is the maximum shortest path length over all pairs of vertices:
diam(G) =max

�

SPG(u, v) : u, v ∈ V
	

.

Sometimes graphs allow multiple edges between the same pair of vertices, called multi-edges.
Graphs with multi-edges are called multi-graphs. We will allow multi-edges in a couple algorithms
just for convenience.

By convention we will use the following definitions:

n = |V |
m = |E|

Note that a directed graph can have at most n2 edges (including self loops) and an undirected graph
at most n(n− 1)/2. We informally say that a graph is sparse if m� n2 and dense otherwise. In most
applications graphs are very sparse, often with only a handful of neighbors per vertex when averaged
across vertices, although some vertices could have high degree. Therefore, the emphasis in the design
of graph algorithms, at least for this class, is typically on algorithms that work well for sparse graphs.
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