Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2012)

Lecture 4 — ADTs, Reduce, and Scan
Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012)

Lectured by Margaret Reid-Miller — 26 January 2012

1 Abstract Data Types and Data Structures

So far in class we have defined several “problems” and discussed algorithms for solving them. The
idea is that the problem is an abstract definition of what we want in terms of a function specification,
and the algorithms are particular ways to solve/implement the problem. In addition to abstract
functions we also often need to define abstractions over data. In such an abstraction we define a set
of functions (abstractly) over a common data type. As mentioned in the first lecture, we will refer to
the abstractions as abstract data types and their implementations as data structures.

An example of an abstract data type you should have seen before (in 15-122) is a priority queue.
Let’s consider a slight extension where in addition to insert, and deleteMin, we will add a function
that joins two heaps into a single heap. For historical reasons, we will call such a join a meld, and the
ADT a "meldable priority queue".

Definition 1.1. Given a totally ordered set S, a Meldable Priority Queue (MPQ) is a type T representing
subsets of S along with the following values and functions:

empty : T = {1
insert(S,e) : TxS—>T = Su{e}

. , _ (s,L1) S=1{}
deleteMin(s) : T—-Tx(SU{l}) = { (S\ {minS}, minS) otherwise
meld(Sl,Sz) : TXT—T = Sl USZ

We use the empty braces {} to denote an empty queue, set union U to denote adding an element
to a queue or joining two queues, and set difference \ to remove an element from the queue. Note
that deleteMin returns the special element | when the queue is empty; it represents undefined.

When translated to SML this definition corresponds to a signature of the form:

signature MPQ

sig
struct S : ORD

type t
val empty : t
val insert : t * S.t -> ¢t
val deleteMin : t -> t * S.t option
val meld : t * t -> t

end

fLecture notes by Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.

1 Version 1.1

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2012)

Note that the type t is abstracted (i.e. it is not specified to be sets of elements of type S.t) since
we don’t want to access the queue as a set but only through its interface. Note also that the signature
by itself does not specify the semantics but only the types (e.g., it could be insert does nothing
with its second argument). To be an ADT we have to add the semantics as written on the righthand
side of the equations in Definition 1.1.

In general SML signatures for ADTs will look like:

sig
struct S1 : ADT1

type t

helper types

val vl : ... t

val v2 : ... t
end

Now the operations on a meldable priority queue might have different costs depending on the
particular data structures used to implement them. If we are a "client" using a priority queue as part
of some algorithm or application we surely care about the costs, but probably don’t care about the
specific implementation. We therefore would like to have abstract cost associated with the interface.
For example we might have for work:

I1 I2 I3
insert(S,e) o(|S)) O(log|S]) O(log|S|)
deleteMin(S) 0(1) O(log|S]) O(log|S))

meld(S1,52) O(IS11+1S21) O(IS11+1S31) O(log(|S1]+ 1S21))

You have already seen data structures that match the first two bounds. For the first one maintain-
ing a sorted array will do the job. You have seen a couple that match the second bounds. What are
they? We will be covering the third bound, which has a faster meld operation than the others, later
in the course.

In any case, these cost definitions sit between the ADT and the specific data structures used to
implement them. We will refer to them as cost specifications. We therefore have three levels: the
abstract data type (specifying the interface), the cost specification (specifying costs), and the data
structure (specifying the implementation).

2 Sequences

The first ADT we will go through in some detail is the sequence ADT. You have used sequences
in 15-150. But we will add some new functionality and will go through the cost specifications in
more detail. There are two cost specifications for sequences we will consider, one based on an array
implementation, and the other based on a tree implementation. However in this course we will
mostly be using the array implementation. In the lecture we will not go through the full interface, it
is available in the documentation, but here are some of functions you should be familiar with:

2 Version 1.1

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2012)

nth, tabulate, map, reduce, filter, take, drop, showt,
and here are some we will discuss in the next couple lectures.
scan, inject, collect, tokens, fields

Two important sequence operations are reduce and scan. You have seen reduce before, but you
may not be aware of some of its useful applications. Scan is a related operation that is surprisingly
powerful. We will consider some examples of their use, clarify their semantics, and then how they
might be implemented.

2.1 Reduce Operation

Recall that reduce function has the interface

reduce fIS:(axa—a)—a—aseq—a

When the combining function f is associative, i.e., f (f(x,¥),2) = f(x, f(y,%)), reduce returns
the sum with respect to f of of the input sequence S. It is the same result returned by iter. The
reason we include reduce is that it is parallel, whereas iter is strictly sequential. Note, though,
iter can use a more general combining function.

The results of reduce and iter, however, may differ if the combining function is non-associative.
In this case, the order we perform the reduction determines what result we get; because the function
is non-associative, different orderings will lead to different answers. While we might try to apply
reduce to only associative operations, unfortunately even some functions that seem to be associative
are actually not. For instance, floating point addition and multiplication are not associative. In
SML/NJ, integer addition is not associative either because of the overflow exception.

To properly deal with combining functions that are non-associative, it is clearly important to
specify the order that the combining function is applied to the sequence. This order is part of the
specification of the ADT Sequence. In this way, every (correct) implementation returns the same
result when applying reduce; the results are deterministic regardless of which data structure you
use.

For this reason, we define a specific combining tree, which is defined quite carefully in the library
documentation for reduce. This tree is the same as if we rounded up the length of the input sequence
to the next power of 2, i.e., |x| = 2%, and then put a perfectly balanced binary tree' over the sequence
with 2¥ leaves. Wherever we are missing children in the tree, we don’t apply the combining function.
An example is shown in the following figure.

A perfect binary tree is a tree in which every node other than the leaves have exactly 2 children.

3 Version 1.1

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2012)

g = combine = "dummy" elements

X. X X X Xi X,
Xq Xo X3 X4 X5 Xg 1 2 3 4 5 6

In the next lecture we will offer an explanation why we chose this particular combining order.

2.2 Divide and Conquer with Reduce

Now, let’s look back at divide-and-conquer algorithms you have encountered so far. Many of these
algorithms have a “divide” step that simply splits the input sequence in half, proceed to solve the
subproblems recursively, and continue with a “combine” step. This leads to the following structure
where everything except what is in boxes is generic, and what is in boxes is specific to the particular
algorithm.

fun myDandC(S) =
case showt(S) of
EMPTY = | emptyVal
| ELT(v) = | base |(v)
| NODE(L, R) = let
val L’ =myDandC(L)
val R’ =myDandC(R)
in

O 0 N O U1 A~ w N =

someMessyCombine |(L’,R’)

[
o

end

Algorithms that fit this pattern can be implemented in one line using the sequence reduce
function. You have seen this in Homework 1 in which we asked for a reduce-based solution for the
stock market problem. Turning such a divide-and-conquer algorithm into a reduce-based solution is
as simple as invoking reduce with the following parameters:

reduce | someMessyCombine | | emptyVal | (map S)

We will take a look two examples where reduce can be used to implement a relatively sophisti-
cated divide-and-conquer algorithm. The first example we will consider today; the second we will
considered in the next lecture.

4 Version 1.1

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2012)

Algorithm 4: MCSS Using Reduce.

The first example is the Maximum Contiguous Subsequence Sum problem from last lecture. Given a
sequence S of numbers, find the contiguous subsequence that has the largest sum—more formally:

j
mcss(s):max{Zsk : 1§i§n,i§j§n}.

k=i

Recall that the divide-and-conquer solution involved returning four values from each recursive
call on a sequence S: the desired result mcss(S), the maximum prefix sum of S, the maximum suffix
sum of S, and the total sum of S. We will denote these as M, P, S, T, respectively. We use v, to
denote max{v,0}. To solve the mcss problem we can then use the following implementations for
combine, base, and emptyVal:

fun combine((M,P;,S;, T;),(Mg,Pg,Sg, T)) =
(maX(SL + Py, ML;MR): maX(PL; T, + PR); maX(SRaSL + TR); T, + TR)

fun base(v)=(vy,v,, vy, V)

val emptyVal =(0,0,0,0)
and then solve the problem with:

reduce combine emptyVal (map base S)

Stylistic Notes. We have just seen that we could spell out the divide-and-conquer steps in detail
or condense our code into just a few lines that take advantage of the almighty reduce. So which is
preferable, using the divide-and-conquer code or using reduce? We believe this is a matter of taste.
Clearly, your reduce code will be (a bit) shorter, and for simple cases easy to write. But when the
code is more complicated, the divide-and-conquer code is easier to read, and it exposes more clearly
the inductive structure of the code and so is easier to prove correct.

Restriction. You should realize, however, that this pattern does not work in general for divide-and-
conquer algorithms. In particular, it does not work for algorithms that do more than a simple split
that partitions their input in two parts in the middle. For example, it cannot be used for implementing
quick sort as the divide step partitions the data with respect to a pivot. This step requires picking a
pivot, and then filtering the data into elements less than, equal, and greater than the pivot. It also
cannot be used for the closest-pair problem from Homework 2. Neither of these algorithms fits the
pattern.

2.3 Scan Operation

A function closely related to reduce is scan. We mentioned it during the last lecture and you
covered it in recitation. It has the interface:

5 Version 1.1

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2012)

scanfIS:a—(axa—a)— aseq—(aseqxa)

As with reduce, when the function f is associative, the scan function returns the sum with
respect to f of each prefix of the input sequence S, as well as the total sum of S. Hence the operation
is often called the prefix sums operation. For associated f, it can be defined as follows:

1 fun scan f I S=
2 ({(reduce f I (take(S,i)):i€(0,...n—1)),
3 reduce f I S)

In this code the notation (reduce f I (take(S,i)):i€(0,...,n—1)) indicates that for each i
in the range from O to n — 1 apply reduce to the first i elements of S. For example,

scan + 0 (2,1,3) = ({(reduce + 0 (), reduce + 0 (2), reduce + 0 (2,1))
reduce + 0 (2,1,3))
= ({(0,2,3),6)
Using a bunch of reduces, however, is not an efficient way to calculate the partial sums.
Exercise 1. What is the work and span for the scan code shown above, assuming f takes constant

work.

In the next lecture we will discuss how to implement a scan with the following bounds:

W(scan fI1S) = O0O(|S])
S(scan f IS) = O(loglS|)

assuming that the function f takes constant work. For now we will consider why the operation is
useful by giving an examples. You should have already seen how to use it for parenthesis matching
and the stock market problem in recitation.

Algorithm 5: The MCSS problem using scan

Let’s consider how we might use scan operations to solve the Maximum contiguous subsequence
L j—1 .
(MCSS) problem. That is, find maxo<;<j<,(5,_; Sx)- Any ideas?

j—1
mcss(S) = max (ZSk)
k=i

0<i<j<n

j-1 i—1
= max E S, — E S
OSiSan(k)
k=0 1=0

= max (X;—X;)

0<i<j<n

= max (X; — min X;)
0<j<n 0<i<j

6 Version 1.1

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Spring 2012)

What if we do a scan on our input S using addition starting with 0? Suppose it returns X. Now for
a position j let’s consider all positions i < j. To calculate the sum from i (inclusive) to j (exclusive)
all we have to consider is X; — X;. This difference represents the total sum of the subsequence from i
to j. For each j, how do we calculate the maximum sum that ends at j (exclusive), call it R;.

Well this is

i j-1 j-1 J-1

The last equality is because the maximum of a negative is the minimum of the negative. What is
the term? It is just the minimum value of X up to j (exclusive). Now we want to calculate it for all j,

. s
so we can use a scan. Finally, we want the maxlj.:|0 R;.

Putting it altogether, we get

j—1
MCSS(S) = S
()= max (350

<i<j<ls|

j—1 i—1
= max O18->.5)
o<i<j<ls| &= e

= max (X;—X;)

0<i<j<|s|

= max (X; — min X;)
o<j<Is| 0<i<j

This final formula gives the following algorithm:

1 fun MCSS(S) =

2 let

3 val X =scan + 0 S

4 val M =scan min oo X
5 in

6 max (X; —M;:0<j<|])
7 end

7 Version 1.1

	Abstract Data Types and Data Structures
	Sequences
	Reduce Operation
	Divide and Conquer with Reduce
	Scan Operation

