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Lecture 2 — Divide-and-Conquer and Recurrences

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012)

Lectured by Kanat Tangwongsan — January 19, 2012

Material in this lecture: Today’s lecture is about divide and conquer.
- Multiply n-bit numbers
- Solving recurrences using the tree method.

1 Divide and Conquer

Divide and conquer is a highly versatile technique that generally lends itself very well to parallel
algorithms design. You probably have seen the divide-and-conquer technique many times before
this class, but this is such an important technique that it is worth seeing it over and over again. It is
particularly suited for “thinking parallel” because it offers a natural way of creating parallel tasks.

In most divide-and-conquer algorithms you have encountered so far, the subproblems are oc-
currences of the problem you are solving (e.g. recursive sorting in merge sort). This is not always
the case. Often, you’ll need more information from the subproblems to properly combine results
of the subproblems. In this case, you’ll need to strengthen the problem, much in the same way
that you strengthen an inductive hypothesis when doing an inductive proof. We will go through
some examples in this class where problem strengthening is necessary. But you have seen some such
examples already from Recitation 1 and your Homework 1.

The structure of a divide-and-conquer algorithm follows the structure of a proof by (strong)
induction. This makes it easy to show correctness and also to figure out cost bounds. The general
structure looks as follows:

— Base Case: When the problem is sufficiently small, we return the trivial answer directly or
resort to a different, usually simpler, algorithm, which works great on small instances.

— Inductive Step: First, the algorithm divides the current instance I into parts, commonly
referred to as subproblems, each smaller than the original problem. Then, it recurses on each of
the parts to obtain answers for the parts. In proofs, this is where we assume inductively that
the answers for these parts are correct, and based on this assumption, it combines the answers
to produce an answer for the original instance I .

This process can be schematically depicted as
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foo(n1)

foo(n2)

foo(nk)

DIVIDE COMBINE

On the assumption that the subproblems can be solved independently, the work and span of such
an algorithm can be described as the following simple recurrences: If the problem of size n is broken
into k subproblems of size n1, . . . , nk, then the work is

W (n) = Wdivide(n) +
k
∑

i=1

W (ni) + Wcombine(n)

and the span is

S(n) = Sdivide(n) +
k

max
i=1

S(ni) + Scombine(n)

Note that the work recurrence is simply adding up the work across all components. More interesting
is the span recurrence: First, note that a divide and conquer algorithm has to split a problem instance
into subproblems before these subproblems are recursively solved. Furthermore, it cannot combine
the results from these subproblems to generate the ultimate answer until the recursive calls on the
subproblems are complete. This forms a chain of sequential dependencies, explaining why we add
their span together. The parallel execution takes place among the recursive calls since we assume that
the subproblems can be solved independently—this is why we take the max over the subproblems’
span.

Applying this formula results in familiar recurrences such as W (n) = 2W (n/2) +O(n). In the
rest of this lecture, we’ll get to see other recurrences. For how, let’s derive a closed-form for this
expression.

The first recurrence we’re looking at is W (n) = 2W (n/2) +O(n), which you probably have seen
many times already. To derive a closed form for it, we’ll review the tree method, which you have seen
in 15-122 and 15-251.

But first, let’s think through what it means when we write O( f (n)) in an expression (e.g., when
we write 4W (n/2) +O(n) in the recurrence above). In these expression, we write O( f (n)) in place
of some function g(n) ∈ O( f (n)). From the definition of O(·), this means that there exist positive
constants N0 and c such that for all n ≥ N0, we have g(n) ≤ c · f (n). It follows that there exist
constants k1 and k2 such that for all n≥ 1,

g(n) ≤ k1 · f (n) + k2,

where, for example, we can take k1 = c and k2 =
∑N0

i=1 |g(i)|.

By this argument, we can establish that

W (n) ≤ 2W (n/2) + k1 · n+ k2,
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where k1 and k2 are constants. We’ll now use the tree method.

The idea of the tree method is to consider the recursion tree of the algorithm in hope to derive an
expression for what’s happening at each level of the tree. In this particular example, we can see that
each node in the tree has 2 children, whose input is half the size of that of the parent node. Moreover,
if the input has size n, the recurrence shows that the work, excluding that of the recursive calls, is at
most k1 · n+ k2. Therefore, our recursion tree annotated with cost looks like this:

k1 n + k2

k1 (n/2) + k2 k1 (n/2) + k2

k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2

k1 n + k2

k1 n + 2 k2

k1 n + 4 k2

To apply the tree method, there are some key questions we should ask ourselves to aid drawing
out the recursion tree and to understand the cost associated with the nodes:

• How many levels are there in the tree?

• What is the problem size at level i?

• How much work is being done at each node in level i?

• How many nodes are there at level i?

• How much work is performed across the nodes in level i?

Our answers to these questions lead to the following analysis: We know that level i (the root is
level i = 0) contains 2i nodes, each costing at most k1(n/2i) + k2. Thus, the total cost in level i is at
most

2i ·
�

k1
n

2i + k2

�

= k1 · n+ 2i · k2.

Since we keep halving the input size, the number of levels is bounded by 1+ log n. Hence, we
have

W (n) ≤
log n
∑

i=0

�

k1 · n+ 2i · k2

�

= k1n(1+ log n) + k2(n+
n
2
+ n

4
+ · · ·+ 1)

≤ k1n(1+ log n) + 2k2n

∈ O(n log n),

where in the second to last step, we apply the fact that for a > 1,

1+ a+ · · ·+ an =
an+1− 1

a− 1
≤ an+1.
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2 Example I: Multiply n-bit Numbers

Let’s take a look at one of the most basic computing primitives. Suppose we want to multiply two
n-bit numbers, say A and B. More formally, we have:

Problem 2.1 (The Multiplication Problem). Given two n-bit numbers

A= 〈an−1, an−2, . . . , a0〉 and

B = 〈bn−1, bn−2, . . . , b0〉,

compute the product AB in binary.

For example, if A is 210 (11010010 in binary) and B is 251 (11111011 in binary), then the
answer we’re looking for is 52,710, or 1100110111100110 in binary.

How do we solve this problem? According to what it means to multiply, what we’re after is the
result of adding A= 210 to itself B = 251 times, or symmetrically, adding B = 251 to itself A= 210
times. This is not particular efficient. Say we can add two n-bit numbers in O(n) work and O(log n)
span. This naïve approach can need as many as Θ(2n) additions, so:

Super Naïve Multiply: Θ(n2n) work and Θ(2n log n) span.

That’s exponential work and span. Very slow.

There is clearly a better way to do this. As we learn back in grade school, we can multiply
numbers like this (though, they probably didn’t teach you to multiply binary numbers):

11111011
11010010 x

-----------------------
11111011

11111011
11111011 +

11111011
-----------------------
1100110111100110

=======================

This is what is known long multiplication. In this process, each digit of the multiplier is multiplied
with the multiplicand—and the results are added up. Because there are n bits in the multiplier, this
method generates n n-bit numbers for us to add, which requires Θ(n) additions. Now if we add them
one by one sequentially1, we have:

Grade School Multiply: Θ(n2) work and Θ(n log n) span.

1You might remember from 15-150 that there is an operation called reduce, which allows one to add up these numbers
in parallel. Indeed, the same idea applies here, but since we’re working with “big” numbers and the cost of adding up two
numbers is superconstant, we’ll need a more refined cost analysis, which we’ll discuss in a few lectures.
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We might ask what the parallelism is here. Remember that the parallelism measure is simply W/S, so

Parallelism≈
n2

n log n
= n/ log n.

Is this the best way to multiply two numbers? For a long time, it was believed that multiplying two
numbers requires Ω(n2) work. In 1952, Andrey Kolmogorov even conjectured that this is essentially
the best possible. As it turns out, we now know that we can multiply two numbers much faster than
this. Today, we will reconstruct an algorithm due to Karatsuba that takes only O(n1.585) work. Anatolii
Karatsuba, then a 23-year-old student in Russia, invented the algorithm in 1960 although the paper
wasn’t published until 1962, and interestingly enough, he did not write this paper—Kolmogorov,
possibly together with Yuri Ofman, wrote the paper under Karatsuba and Ofman’s names.

2.1 First Attempt Using Divide-and-Conquer

Let’s try divide and conquer. The first question to ask ourselves is, how to divide up the problem?
The first thing that comes to mind might be the simplest split, dividing them each into their most-
significant half and their least-significant half:

A= p2n/2+ q A= p q

B = r2n/2+ s B = r s

So then, the product A · B is simply

A · B = pr · 2n+ (ps+ rq) · 2n/2+ qs

That is, to compute A · B, we need to compute pr, ps, rq, qs—that’s a total of 4 multiplies. These
multiplies are independent, so they can be done together. The size of these numbers are also only
n/2. In addition to this, we will need 2 shift operations and 3 adds. For concreteness, we can write
the following pseudocode:

1 fun mult(A, B) =
2 if |A| ≤ 1 then




A0 · B0
�

3 else let
4 val (p, q) = (A0..n/2, An/2+1..n−1)
5 val (r, s) = (B0..n/2, Bn/2+1..n−1)
6 val (pr, ps, rq, qs) = par

�

mult(p, r)‖mult(p, s)‖mult(r, q)‖mult(q, s)
�

7 val sum= ps+ rq
8 in
9 shift(pr, n) + shift(sum, n/2) + qs

10 end

The recursion calls in this code all happen on Line 6. This gives us the following recurrences:

W (n) = 4W (n/2) +O(n)

S(n) = S(n/2) +O(log n)
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Solving these recurrences: Again, we’ll use the tree method. Like before, this recurrence translates
to

W (n) ≤ 4W (n/2) + k1 · n+ k2,

where k1 and k2 are constants. We can draw the recursion tree annotated with cost which looks like
this:

k1 n + k2

k1 (n/2) + k2

k1 n + k2

k1 2n + 4 k2

k1 4n + 16 k2

k1 (n/2) + k2 k1 (n/2) + k2 k1 (n/2) + k2

Let’s use the convention that the root is level i = 0. We know that the problem size at level i is
n/2i, so each node costs at most k1(n/2i) + k2. We also know that level i contains 4i nodes. Thus,
the total cost in level i is at most

4i ·
�

k1
n

2i + k2

�

= k1 · 2i · n+ 4i · k2.

Once again, since we keep halving the input size, the number of levels is bounded by 1+ log n.
Hence, using a similar reasoning as before, we have

W (n) ≤
log n
∑

i=0

�

k1 · 2i · n+ 4i · k2

�

≤ k1n21+log2 n+ k241+log2 n

= 2k1n · 2log2 n
︸ ︷︷ ︸

=n

+4k2 4log2 n
︸ ︷︷ ︸

=n2

= (2k1+ 4k2)n
2

∈ O(n2)

As for span, by unfolding the recurrence, we have the following recursion tree:

k log n

k log n/2

k log n/4
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We conclude that the span is

S(n) =
log n
∑

i=0

k log(n/2i) =
log n
∑

i=0

k(log n− i) ∈ O(log2 n).

So this algorithm is still an O(n2)-work algorithm. We haven’t really made any progress, have
we? The span bound does get a bit better—we are down to O(log2 n) span.

What other ideas might we try?

2.2 Second Attempt, Still Using Divide-and-Conquer

One idea is to reduce the number of subproblems that need be solved. But how can we compute pr,
(ps+ qr), and qs using less than 4 multiplies? Remember that adding up numbers are cheap as long
as we don’t do too many of them.

Puzzle: Given four numbers p, q, r, s, can you compute pr, qs, (ps+qr) using 3 multiplies
and at most 4 adds?

The solution to this puzzle is the critical step behind obtaining a divide-and-conquer algorithm
with less work than before. For starters, we’ll look at what happens if we multiply together (p+ q) ·
(r + s). What we get is

(p+ q) · (r + s) = pr + ps+ qr + qs.

This suggests that ps+ qr can be written as

ps+ qr = (p+ q) · (r + s)− pr − qs.

This is perfect: to compute the 3 crucial terms, we only need to multiply p with r, q with s, and p+ q
with r + s, and we will be just adding them up. This motivates the following improved algorithm:

1 fun fastMult(A, B) =
2 if |A| ≤ 1 then




A0 · B0
�

3 else let
4 val (p, q) = (A0..n/2, An/2+1..n−1)
5 val (r, s) = (B0..n/2, Bn/2+1..n−1)
6 val (suma, sumb) = (p+ q, r + s)
7 val (pr, prod, qs) = par

�

fastMult(p, r)‖fastMult(suma, sumb)‖fastMult(q, s)
�

8 val sum= prod − pr − qs
9 in

10 shift(pr, n) + shift(sum, n/2) + qs
11 end

This time, we make only 3 recursive calls to fastMult, each on a problem of size n/2; therefore,
our work/span recurrences become

W (n) = 3W (n/2) +O(n)

S(n) = S(n/2) +O(log n)
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Let’s solve it, again, using the tree method. Already, we know that the span recurrence solves
to S(n) = O(log2 n); this is the exact same recurrence we reasoned about a while ago. For the work
recurrence, applying the definition of big-O gives us

W (n) ≤ 3W (n/2) + k1n+ k2 for some k1, k2 > 0.

Once more, we’ll draw the recursion tree and annotate it cost. The tree looks more interesting
this time:

k1 n + k2

k1 (n/2) + k2

k1 n + k2

k13n/2 + 3k2

k1 9n/4 +  9k2

k1 (n/2) + k2 k1 (n/2) + k2

Since every node has 3 children, the number of nodes at level i (counting from i = 0 at the root) is
3i; however, the problem size shrinks by a factor of 2 at every level, so the problem size at level i is
n/2i and the cost at each node at level i is at most k1n/2i + k2. This means that across level i, the
cost is at most

3i
�

k1
n

2i + k2

�

Now, like before, there are at most 1+ log2 n levels because each level shrinks the problem size in
half. Therefore, the total work is

log2 n
∑

i=0

3i
�

k1
n

2i + k2

�

=
log2 n
∑

i=0

k1 · n ·
�

3
2

�i
+ k2 · 3i

≤ k1 · n · (3/2)1+log2 n+ k2 · 31+log2 n

= 3
2
k1 · n · (3/2)log2 n+ 3k2 · 3log2 n

=
�

3
2
k1+ 3k2

�

nlog2 3 ∈ O(nlog2 3)

(See the footnote2 if you’re puzzled about the second to last step.)

We conclude that W (n) ∈ O(nlog2 3) or about O(n1.585). This is a significant improvement in
terms of work over the previous algorithm, which was O(n2). Notice, though, that we’re getting less
parallelism because the simple divide-and-conquer algorithm gave us n2/ log2 n parallelism while the
“better” algorithm only gives us n1.585/ log2 n. Is this necessarily a bad thing?

2Notice that n · (3/2)log2 n = n · nlog2(3/2) = n · nlog2 3−1 = nlog2 3.
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3 Teaser — Maximum Contiguous Subsequence Sum Problem

As a teaser for next time, consider the maximum contiguous subsequence sum (MCSS) problem,
defined as follows:

Definition 3.1 (The Maximum Contiguous Subsequence Sum (MCSS) Problem). Given a sequence
of numbers s = 〈s1, . . . , sn〉, the maximum contiguous subsequence sum problem is to find

max

(

j
∑

k=i

sk : 1≤ i ≤ n, i ≤ j ≤ n

)

.

(i.e., the sum of the contiguous subsequence of s that has the largest value).

3.1 Algorithm 1: Brute Force

Immediate from the definition is an algorithm with O(n3) work and O(log n) span. This algorithm
examines all possible combinations of subsequences and for each one of them, it computes the sum
and takes the maximum. Note that every subsequence of s can be represented by a starting position i
and an ending position j. We will use the shorthand si.. j to denote the subsequence 〈si , si+1, . . . , s j〉.

For each subsequence i.. j, we can compute its sum by applying a plus reduce. This does O( j− i)
work and O(log( j− i)) span. Furthermore, all the subsequences can be examined independently in
parallel (using, e.g., tabulate). This leads the following bounds:

W (n) =
∑

1≤i≤ j≤n

Wreduce(n) =
∑

i≤i≤ j≤n

( j− i) = O(n3)

S(n) = max
1≤i≤ j≤n

Sreduce(n) = max
i≤i≤ j≤n

log( j− i) = O(log n)

Note that these bounds didn’t include the cost of the max reduce taken over all these sequences.
This max reduce has O(n2) work and O(log n) span3; therefore, the cost of max reduce is subsumed
by the other costs analyzed above. Overall, this is a O(n3)-work O(log n)-span algorithm.

As you might notice already, this algorithm is clearly inefficient. We’ll apply divide and conquer
to come up with a more efficient solution.

Exercise 1. Can you improve the work of the naïve algorithm to O(n2)?

3Note that it takes the maximum over
�n

2

�

≤ n2 values, but since log na = a log n, this is simply O(log n)
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