
Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

Lecture 1 — Overview, Algorithmic Techniques and Cost Models

Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012)

Lectured by Margaret Reid-Miller base on notes by Guy Blelloch — 17 January 2012

1 Administrivia

Welcome to 15-210 Parallel and Sequential Data Structures and Algorithms. This course covers
methods for designing, analyzing, and programming sequential and parallel algorithms and data
structures, with an emphasis on fundamental concepts that will be applicable across a wide variety of
problem domains, and transferable across a reasonably broad set of programming languages and
computer architectures. There is no textbook for the class. We will (electronically) distribute course
notes and supplemental reading materials as we go along. Each set of

The course web site is located at

http://www.cs.cmu.edu/~15210

Please take time to look around the website. While you’re at it, we strongly encourage you to
read and understand the collaboration policy.

Instead of spamming you with mass emails, we will post announcements, clarifications, correc-
tions, hints, etc. on the course web site and on the class bboards—please check them on a regular
basis. The bboards are academic.cs.15-210.announce for announcements from the course staff
and academic.cs.15-210.discuss for general discussions and clarification questions.

There will be approximately weekly assignments due at 11:59pm, 2 midterm exams, and a final
exam.

Since this is only the second incarnation of 15-210 we would appreciate feedback any time. Please
come talk to us if you have suggestions and/or concerns.

2 Course Overview

This is a data structures and algorithms course, but it differs from a traditional course in data
structures and algorithms in many ways. In particular, this course centers around the following
themes:

• defining precise problem and data abstractions

• designing and programming correct and efficient algorithms and data structures for given
problems and data abstractions

†Lecture notes by Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.

1 Version 1.0

http://www.cs.cmu.edu/~15210

Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

We will be looking at the following relationship matrix:

Abstraction Implementation

Functions Problem Algorithm
Data Abstract Data Type Data Structure

A problem specifies precisely the problem statement and the intended input/output behavior in
an abstract form. It is an abstract (precise) definition of the problem but does not describe how it
is solved. Whereas an algorithm is what allows us to solve a problem; it is an implementation that
meets the intended specification. Typically, a problem will have many algorithmic solutions. For
example, sorting is a problem—it specifies what the input is (e.g., a sequence of numbers) and the
intended output (e.g., an ordered sequence of numbers)—but quicksort is an algorithm that solves
the sorting problem and insertion sort is another algorithm. The distinction between problems vs.
algorithms is standard in literature.

Similarly, an abstract data type (ADT) specifies precisely an interface for accessing data in an
abstract form without specifying how the data is structured, whereas a data structure is a particular
way of organizing the data to support the interface. For an ADT, the interface is specified in terms
of a set of operations on the type. For example, a priority queue is an ADT with operations that
might include insert, findMin, and isEmpty?. Various data structures can be used to implement
a priority queue, including binary heaps, arrays, and balanced binary trees. The terminology ADTs vs.
data structures is not as widely used as problems vs. algorithms. In particular, sometimes the term
data structure is used to refer to both the interface and the implementation. We will try to avoid such
usage in this class.

The crucial differences between this course and a traditional course on data structures and
algorithms lie in our focus on parallelism and our emphasis on functional language implementation.
We’ll also put heavy emphasis on helping you define precise and concise abstractions.

Due to physical and economical constraints, a typical machine we can buy now has 4 to 8
computing cores, and soon this number will be 16, 32, and 64. While the number of cores grows
at a rapid pace, the per-core speed hasn’t increased much over the past several years. Additionally,
graphics processing units (GPUs) are highly parallel platforms with hundreds of cores readily available
in commodity machines today. This gives a compelling reason to study parallel algorithms. The table
below shows some example timings from a recent paper.

Serial Parallel
1-core 8-core 32h-core

Sorting 10 million strings 2.9 2.9 .4 .095
Remove duplicates 10M strings .66 1.0 .14 .038
Min spanning tree 10M edges 1.6 2.5 .42 .14
Breadth first search 10M edges .82 1.2 .2 .046

32h stands for 32 cores with hyperthreading.

In this table, the sorting algorithm used in sequential is not the same as the algorithm used
in parallel. Notice that going from 1 core to 8 core is not quite 8 times faster, as can be expected

2 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

with overheads associated with parallelization. The magic is going from 8 core to 32 cores, which
is more than four times as fast. The reason for this extra speedup is that the 32-core machine
uses hyperthreading, which allows for 64 threads and provides the additional speedup. The other
algorithms don’t show quite the same speedup.

It is unlikely that you will get similar speedup using Standard ML. But maximizing speedup by
highly tuning an implementation is not the goal of this course. That is an aim of 15-213. Functional
languages, however, are great for studying parallel algorithms—they’re safe for parallelism because
they avoid mutable data. They also generally provide a clear distinction between abstraction and
implementations, and are arguably easier to build “interesting” applications quickly.

3 Algorithmic Techniques

In this class we are going to cover many algorithmic techniques/approaches for solving problems.
In the context of the shortest superstring (SS) problem we already mentioned three techniques:
brute force, reducing one problem to another, and the greedy approach. In the next lecture we will
discuss divide-and-conquer and in previous classes I’m sure you have seen other techniques. To give
a preview of what else we will be covering in this course, here is a list of techniques we will cover.
All these techniques are useful for both sequential and parallel algorithms, however some, such as
divide-and-conquer, play a even larger role in parallel algorithms.

Brute Force: The brute force approach typically involves trying all possibilities. In SS problem,
for example, we argued that every solution has to correspond to a permutation of the inputs with
overlaps removed. The brute force approach therefore tried all permutations and picked the best.
Since there are n! permutations, this solution is not “tractable” for large problems. In many other
problems there are only polynomially many possibilities. For example in the stock market problem on
the first homework you need only try all pairs of elements from the input sequence. There are only
O(n2) such pairs. However, even O(n2) is not good, since as you will work out in the assignment
there are solutions that require only O(n) work. One place the brute force approach can be very
useful is when writing a test routine to check the correctness of more efficient algorithms. Even if
inefficient for large n the brute force approach could work well for testing small inputs. The brute
force approach is often the simplest solution to a problem.

Reducing to another problem: Sometimes the easiest thing to do is just reduce the problem to
another problem for which known algorithms exist. In the case of the SS problem we reduced it to
what would seem superficially to be a very different problem, the Traveling Salesperson problem. The
reduction was pretty straightforward, but how would anyone even think of doing such a translation.
When you get more experienced with algorithms you will start recognizing similarities between
problems that on the surface seem very different.

Inductive techniques: The idea behind inductive techniques is to solve one or more smaller
problems that can be used to solve the original problem. The technique most often uses recursion to
solve the sub problems and can be proved correct using (strong) induction. Common techniques that
fall in this category include:

3 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

• Divide-and-conquer. Divide the problem on size n into k > 1 subproblems on sizes n1, n2, . . . nk,
solve the problem recursively on each, and combine the solutions to get the solution to the
original problem.

• Greedy. For a problem on size n use some greedy approach to pull out one element leaving a
problem of size n− 1. Solve the smaller problem.

• Contraction. For a problem of size n generate a significantly smaller (contracted) instance (e.g.
of size n/2), solve the smaller instance, and then use the result to solve the original problem.
This only differs from divide and conquer in that we make one recursive call instead of multiple.

• Dynamic Programming. Like divide and conquer, dynamic programming divides the problem
into smaller problems and then combines the solutions to the subproblems to find a solution
to the original problem. The difference, though, is that the solutions to subproblems are
reused multiple times. It is therefore important to store the solutions for reuse either using
memoization or by building up a table of solutions.

Collection Types: Some techniques make heavy use of the operations on abstract data types
representing collections of values. Abstract collection types that we will cover in this course include:
Sequences, Sets, Priority Queues, Graphs, and Sparse Matrices.

Randomization: Randomization in is a powerful technique for getting simple solutions to problems.
We will cover a couple of examples in this course. Formal cost analysis for many randomized
algorithms, however, requires probability theory beyond the level of this course.

Once you have defined the problem, you can look into your bag of techniques and, with practice,
you will find a good solutions to the problem. When we say a good solution we mean:

1. Correct: Clearly correctness is most important.

2. Low cost: Out of the correct solutions, we would prefer the one with the lowest cost. This
brings us to our next topic:

4 Cost Models

When we analyze the cost of an algorithm formally, we need to be reasonably precise in what model
we are performing the analysis. Typically when analyzing algorithms the purpose of the model is not
to calculate exact running times (this is too much to ask), but rather just to analyze asymptotic costs
(i.e., big-O). These costs can then be used to compare algorithms in terms of how they scale to large
inputs. For example, as you know, some sorting algorithms use O(n log n) work and others O(n2).
Clearly the O(n log n) algorithm scales better, but perhaps the O(n2) is actually faster on small inputs.
In this class we are concerned with how algorithms scale, and therefore asymptotic analysis is indeed
what we want. Because we are using asymptotic analysis the exact constants in the model do not
matter, but what matters is that the asymptotic costs are well defined. Since you have seen big-O,
big-Theta, and big-Omega in 15-122, 15-150 and 15-251 we will not be covering it here but would
be happy to review it in recitation.

4 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

There are two important ways to define cost models, one based on machines and the other based
more directly on programming constructs. Both types can be applied to analyzing either sequential
and parallel computations. Traditionally machine models have been used, but in this course, as
in 15-150, we will use a model that abstract to the programming constructs. We first review the
traditional machine model.

4.1 The RAM model for sequential computation:

Traditionally, algorithms have been analyzed in the Random Access Machine (RAM)1 model. This
model assumes a single processor accessing unbounded memory indexed by the non-negative integers.
The processor interprets sequences of machine instructions (code) that are stored in the memory.
Instructions include basic arithmetic and logical operations (e.g. +, -, *, and, or, not), reads from and
writes to arbitrary memory locations, and conditional and unconditional jumps to other locations in
the code. The cost of a computation is measured in terms of the number of instructions execute by
the machine, and is referred to as time.

This model has served well for analyzing the asymptotic runtime of sequential algorithms and
most work on sequential algorithms to date has used this model. It is therefore important to
understand what this model is. One reason for its success is that there is an easy mapping from
algorithmic pseudocode and sequential languages such as C and C++ to the model and so it is
reasonably easy to reason about the cost of algorithms and code. As mentioned earlier, the model
should only be used for deriving asymptotic bounds (i.e., using big-O, big-Theta and big-Omega)
and not for trying to predict exact runtimes. One reason for this is that on a real machine not all
instructions take the same time, and furthermore not all machines have the same instructions.

The problem with the RAM for our purposes is that the model is sequential. There is an extension
of the RAM model for parallelism, which is called the parallel random access machine (PRAM). It
consists of p processors sharing a memory. All processors execute the same instruction on each step.
We will not be using this model since we find it awkward to work with and everything has to be
divided onto the p processors. However, most of the ideas presented in this course also work with
the PRAM, and many of them were originally developed in the context of the PRAM.

We note that one problem with the RAM model is that it assumes that accessing all memory
locations has the same cost. On real machines this is not at all the case. In fact, there can be a factor
of over 100 between the time for accessing a word of memory from the first level cache and accessing
it from main memory. Various extensions to the RAM model have been developed to account for this
cost. For example one variant is to assume that the cost for accessing the the i th memory location
is f (i) for some function f , e.g. f (i) = log(i). Fortunately, however, most of the algorithms that
turn out to be the best in these more detailed models are also good in the RAM. Therefore analyzing
algorithms in the simpler RAM model is a reasonable approximation to analyzing in the more refined
models. Hence the RAM has served quite well despite not fully accounting for memory costs.

The model we use in this course also does not directly account for the variance in memory costs.
Towards the end of the course, if time permits, we will discuss how it can be extended to capture
memory costs.

1Not to be confused with Random Access Memory (RAM)

5 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

4.2 The Parallel Model Used in this Course

Instead of using a machine model, in this course, as with 15-150, we will define a model more
directly tied to programming constructs without worrying how it is mapped onto a machine. The
goal of the course is to get you to “think parallel” and we believe the the model we use makes it
much easier to separate the high-level concepts of parallelism from low-level machine-specific details.
As it turns out there is a way to map the costs we derive onto costs for specific machines.

To formally define a cost model in terms of programming constructs requires a so-called “op-
erational semantics”. We won’t define a complete semantics, but will give a partial semantics to
give a sense of how it works. We will measure complexity in terms of two costs: work and span.
Roughly speaking the work corresponds to the total number of operations we perform, and span to
the longest chain of dependences. Although you have seen work and span in 15-150, we will review
the definition here in and go into some more detail.

We define work and span in terms of simple compositional rules over expressions in the language.
For an expression e we will use W (e) to indicate the work needed to evaluate that expression and
S(e) to indicate the span. We can then specify rules for composing the costs across sub expressions.
Expressions are either composed sequentially (one after the other) or in parallel (they can run at
the same time). When composed sequentially we add the work and we add the span, and when
composed in parallel we add the work but take the maximum of the span. Basically that is it! We do,
however, have to specify when things are composed sequentially and when in parallel.

In a functional language, as long as the output for one expression is not required for the input
of another, it is safe to run the two expressions in parallel. So for example, in the expression
e1 + e2 where e1 and e2 are themselves other expressions (e.g. function calls) we could run the
two expressions in parallel giving the rule S(e1 + e2) = 1+max(S(e1), S(e2)). This rule says the
two subexpressions run in parallel so that we take the max of the span of each subexpression. But
the addition operation has to wait for both subexpressions to be done. It therefore has to be done
sequentially after the two parallel subexpressions and hence the reason why there is a plus 1 in the
expression 1+max(S(e1), S(e2)).

In an imperative language we have to be much more careful. Indeed it can be very hard to figure
out when computations depend on each other and, therefore, when it is safe to put things together in
parallel. In particular subexpressions can interact through shared state. e.g. For example in C, in the
expression:

foo(2) + foo(3)

it is not safe to make the two calls to foo(x) in parallel since they might interact. Suppose

int y = 0;
int foo(int x) return y = y + x;

With y starting at 0, the expression foo(2) + foo(3) could lead to several different outcomes
depending on how the instructions are interleaved (scheduled) when run in parallel. This interaction
is often called a race condition and will be covered further in more advanced courses.

In this course, as we will use only purely functional constructs, it is always safe to run expressions
in parallel. To make it clear whether expressions are evaluated sequentially or in parallel, in

6 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

W (c) = 1

W (op e) = 1

W ((e1, e2)) = 1+W (e1) +W (e2)

W (e1 || e2) = 1+W (e1) +W (e2)

W (let val x = e1 in e2 end) = 1+W (e1) +W (e2[Eval(e1)/x]))

W ({ f (x) : x ∈ A}) = 1+
∑

x∈A

W (f (x))

S(c) = 1

S(op e) = 1

S((e1, e2)) = 1+ S(e1) + S(e2)

S((e1 || e2)) = 1+max(S(e1), S(e2))

S(let val x = e1 in e2 end) = 1+ S(e1) + S(e2[Eval(e1)/x]))

S({ f (x) : x ∈ A}) = 1+max
x∈A

S(f (x))

Figure 1: Composing work and span costs. In the first rule c is any constant value (e.g. 3). In the
second rule op is a primitive operator such as op.+, op.∗, op. , The next rule, the pair (e1, e)2)
evaluates the two expressions sequentially, whereas the rule (e1 || e2) evaluates the two expressions
in parallel. Both return the results as a pair. In the rule for let the notation Eval(e) evaluates
the expression e and returns the result, and the notation e[v/x] indicates that all free (unbound)
occurrences of the variable x in the expression e are replaced with the value v. These rules are
representative of all rules of the language. Notice that all the rules for span are the same as for work
except for parallel application indicated by (e1 || e2) and the parallel map indicated by { f (x) : x ∈ A}.
The expression e inside W (e) and S(e) have to be closed. Note, however, that in the rules such as for
let we replace all the free occurrences of x in the expression e2 with their values before applying W .

the pseudocode we write we will use the notation (e1, e2) to mean that the two expressions run
sequentially (even when they could run in parallel), and e1 || e2 to mean that the two expressions
run in parallel. Both constructs return the pair of results of the two expressions. For example
fib(6) || fib(7) would return the pair (8, 13). In addition to the || construct we assume the set-like
notation we use in pseudocode { f (x) : x ∈ A} also runs in parallel, i.e., all calls to f (x) run in
parallel. These rules for composing work and span are outlined in Figure 1. Note that the rules are
the same for work and span except for the two parallel constructs we just mentioned.

As there is no || construct in the ML, in your assignments you will need to specify in comments
when two calls run in parallel. We will also supply an ML function parallel(f1,f2) with type
(unit -> α) × (unit -> β) -> α × β . This function executes the two functions that are
passed in as arguments in parallel and returns their results as a pair. For example:

parallel (fn => fib(6), fn => fib(7))

returns the pair (8,13). We need to wrap the expressions in functions in ML so that we can make
the actual implementation run them in parallel. If they were not wrapped both arguments would be

7 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

evaluated sequentially before they are passed to the function parallel. Also in the ML code you do
not have the set notation { f (x) : x ∈ A}, but as mentioned before, it is basically equivalent to a map.
Therefore, for ML code you can use the rules:

W (map f

s0, . . . , sn−1
�

) = 1+
n−1
∑

i=0

W (f (si))

S(map f

s0, . . . , sn−1
�

) = 1+
n−1
max
i=0

S(f (si))

Parallelism: An additional notion of cost that is important in comparing algorithms is the parallelism
of an algorithm. The parallelism is simply defined as the work over the span:

P=
W

S

For example for a mergesort with work θ(n log n) and span θ(log2 n) the parallelism would be
θ(n/ log n). Parallelism represents roughly how many processors we can use efficiently. As you saw
in the processor scheduling example in 15-150, P is the most parallelism you can get. That is, it
measures the limit on the performance that can be gained when executed in parallel.

For example, suppose n= 10, 000 and if W (n) = θ (n3)≈ 1012 and S(n) = θ (n log n)≈ 105 then
P(n)≈ 107, which is a lot of parallelism. But, if W (n) = θ (n2)≈ 108 then P(n)≈ 103, which is much
less parallelism. The decrease in parallelism is not because of the span was large, but because the
work was reduced.

Goals: In parallel algorithm design, we would like to keep the parallelism as high as possible but
without increasing work. In general the goals in designing efficient algorithms are

1. First priority: to keep work as low as possible

2. Second priority: keep parallelism as high as possible (and hence the span as low as possible).

In this course we will mostly cover algorithms where the work is the same or close to the same
as the best sequential time. Indeed this will be our goal throughout the course. Now among the
algorithm that have the same work as the best sequential time we will try to achieve the greatest
parallelism.

Under the hood: In the parallel model we will be using a program can generate tasks on the fly
and can generate a huge amount of parallelism, typically much more than the number of processors
available when running. It therefore might not be clear how this maps onto a fixed number of
processors. That is the job of a scheduler. The scheduler will take all of these tasks, which are
generated dynamically as the program runs, and assign them to processors. If only one processor is
available, for example, then all tasks will run on that one processor.

We say that a scheduler is greedy if whenever there is a processor available and a task ready to
execute, then the task will be scheduled on the processor and start running immediately. Greedy
schedulers have a very nice property that is summarized by the following:

8 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Spring 2012)

Definition 4.1. The greedy scheduling principle says that if a computation is run on p processors using
a greedy scheduler, then the total time (clock cycles) for running the computation is bounded by

Tp <
W

p
+ S (1)

where W is the work of the computation, and S is the span of the computation (both measured in
units of clock cycles).

This is actually a very powerful statement. The time to execute the computation cannot be
any better than W

p
clock cycles since we have a total of W clock cycles of work to do and the best

we can possibly do is divide it evenly among the processors. Also note that the time to execute
the computation cannot be any better than S clock cycles since S represents the longest chain of
sequential dependences. Therefore the very best we could do is:

Tp ≥max
�

W

p
, S
�

We therefore see that a greedy scheduler does reasonably close to the best possible. In particular
W
p
+ S is never more than twice max(W

p
, S) and when W

p
� S the difference between the two is very

small. Indeed we can rewrite equation 1 above in terms of the parallelism P=W/S as follows:

Tp <
W

p
+ S

=
W

p
+

W

P

=
W

p

�

1+
p

P

�

Therefore as long as P � p (the parallelism is much greater than the number of processors) then we
get near perfect speedup. (Speedup is W/Tp and perfect speedup would be p).

Truth in advertising. No real schedulers are fully greedy. This is because there is overhead in
scheduling the job. Therefore there will surely be some delay from when a job becomes ready until
when it starts up. In practice, therefore, the efficiency of a scheduler is quite important to achieving
good efficiency. Also the bounds we give do not account for memory affects. By moving a job we
might have to move data along with it. Because of these affects the greedy scheduling principle
should only be viewed as a rough estimate in much the same way that the RAM model or any other
computational model should be just viewed as an estimate of real time.

9 Version 1.0

	Administrivia
	Course Overview
	Algorithmic Techniques
	Cost Models
	The RAM model for sequential computation:
	The Parallel Model Used in this Course

