
15–210: Parallel and Sequential Data Structures and Algorithms

Practice Midterm II

• There are 8 pages in this examination, comprising 5 questions worth a total of 100 points.

• You have 80 minutes to complete this examination.

• Please answer all questions in the space provided with the question. Clearly indicate your
answers.

• You may refer to your one double-sided 81
2 × 11in sheet of paper with notes, but to no other

person or source, during the examination.

• Your answers for this exam must be written in blue or black ink.

Full Name:

Andrew ID: Section:

Question Points Score

Graphs 15

Short Answers 20

Set Operations 20

MST and Tree Contraction 25

Treaps 20

Total: 100

15–210 Practice Midterm II 1 of 8

Question 1: Graphs (15 points)

(a) (6 points) Consider the graph shown below. The edge weights appear next to the edges.

!"
#"

$"

%"

&"

'"

("

)"

*"

+"

,"

,"

+"

,"

*-"

+"

i. Show the order in which vertices are visited by Dijkstra’s single source shortest path
algorithm when the source vertex is A.

ii. Show an order in which vertices are visited by Prim’s minimum spanning tree algo-
rithm when the source vertex is A.

(b) (4 points) What is a key reason you would choose to use Bellman-Ford algorithm instead
of Dijkstra’s algorithm?

(c) (5 points) Show a 3-vertex example of a graph on which Dijkstra’s algorithm fails. Please
clearly identify which vertex is the source.

15–210 Practice Midterm II 2 of 8

Question 2: Short Answers (20 points)
Please answer the following questions each with a few sentences, or a short snippet of code
(either pseudocode or SML code). It has to fit in the given space. You will be graded on clarity
as well as correctness.

(a) (7 points) Consider an undirected graph G with unique positive weights. Suppose it has
a minimum spanning tree (MST) T . If we square all the edge weights and compute the
MST again, do we still get the same tree structure? Explain briefly.

(b) (6 points) A new startup FastRoute wants to route information along a path in a commu-
nication network, represented as a graph. Each vertex represents a router and each edge
a wire between routers. The wires are weighted by the maximum bandwidth they can
support. FastRoute comes to you and asks you to develop an algorithm to find the path
with maximum bandwith from any source s to any destinatin t. As you would expect,
the bandwidth of a path is the minimum of the bandwith of the edges on that path—the
minimum edge is the bottleneck.
Explain how to modify Disjstra to do this. In particular, how would you change the
priority queue and the following relax step?

1 fun relax (Q, (u, v, w)) = PQ.insert (d(u) + w, v) Q

Justify your answer.

(c) (7 points) Given a forest F (a collection of trees) with n vertices, how would you modify
the tree contraction algorithm to return the number of trees (i.e. count the number of
connected components) in F? Your algorithm should run in O(n) work and O(log2 n)
span.

15–210 Practice Midterm II 3 of 8

Question 3: Set Operations (20 points)
We can represent ordered sets of integers using binary search trees by the type

datatype bst = Leaf | Node of (bst * bst * int)

paired with the functions

split : (bst * int) -> bst * bool * bst
join : (bst * int option * bst) -> bst

where split(T,k) returns a pair of trees from T (less than and greater than k) and a flag
indicating if k is in T.

Joe Twoten noticed the course staff kept writing almost the same code to implement set union,
set intersection and set difference. He decided a more elegant solution would be to use higher
order functions and just write the bulk of the code once. Typical of Joe, he only typed in part
of the solution and left the rest up to you.
(a) (8 points) Consider a function

combine : (bool * (int * bool -> int option)) -> (bst * bst) -> bst

where

• combine (true,f) (Leaf,T2) evaluates to T2

• combine (false,f) (Leaf,T2) evaluates to Leaf

• combine (b,f) (T1,T2) evaluates to a bst where every key k that appears in T1 is
replaced by the result of applying f to k and a boolean indicating whether k appears
in T2. Every key that appears only in T2 is handled as specified by b in the base case.

Most of the implementation of combine is provided below. Finish it by filling in the blanks.

fun combine (keep : bool, f : int * bool -> int option)
(T1: bst, T2: bst) : bst =

case (T1, keep) of
(Leaf, true) => T2

| (Leaf, false) =>
| (Node(L1,R1,k1),) =>
let

val (L2, exists, R2) = split ()
in

join (,

,

)
end

15–210 Practice Midterm II 4 of 8

(b) We can use combine to implement the various set operations by making one call with
carefully chosen arguments. For example,

val union = combine (true,(fn (k,) => SOME k)

You may assume that combine works correctly, even if you did not implement it.
i. (3 points) Implement set intersection with exactly one call to combine.

val inter = combine

ii. (3 points) Implement set difference with exactly one call to combine.

val diff = combine

iii. (3 points) Implement symmetric set difference with exactly one call to combine. Re-
call that the symmetric difference of sets A and B is

A∆B := {x : x ∈ A⊕ x ∈ B}

where ⊕ is exclusive or.

val symdiff = combine

(c) (3 points) We could also implement symdiff as

fun symdiff (A,B) = diff(union(A,B), inter(A,B))

Give one reason other than code reuse that it would be preferable to use the implementation
written with combine.

15–210 Practice Midterm II 5 of 8

Question 4: MST and Tree Contraction (25 points)
In this question, we will analyze another parallel algorithm of the Minimum Spanning Tree
problem. In particular, consider the following algorithm on an undirected graph G = (V,E)
with unique weights. We’ll assume throughout this problem that the edges are undirected,
and labeled with a unique identifier (`).

1 % returns the set of edges in the minimum spanning tree of G
2 fun MST (G = (V,E)) =
3 if |E| = 0 then {}
4 else let
5 val F = {min weight edge incident on v : v ∈ V }
6 val (V ′, P) =contract each tree in the forest (V, F) to a single vertex
7 V ′ = remaining vertices
8 P = mapping from each v ∈ V to its representative in V ′

9 val E′ = {(Pu, Pv, `) : (u, v, `) ∈ E | Pu 6= Pv}
10 in
11 MST (G′ = (V ′, E′)) ∪ {` : (u, v, `) ∈ F}
12 end

(a) (4 points) Show an example graph with four vertices in which F will not include all the
edges of the MST.

(b) (4 points) Prove that the set of edges F must be a forest (i.e., F has no cycle).

15–210 Practice Midterm II 6 of 8

(c) (4 points) What technique would you suggest to efficiently contract the forest in parallel.
What is a tight asymptotic bound of the work and span of your contract in terms of
n = |V | (explain briefly)? Are these bounds worst case or expected case?

(d) (4 points) Argue that each recursive call to MST removes, in the worst case, at least 1/2
the vertices; that is, |V ′| ≤ |V |/2.

(e) (4 points) What is the maximum number of edges that could remain after one step (i.e.,
the size of |E′| in terms of m = |E| and n = |V |)? Explain briefly.

(f) (5 points) What is the expected work and span of the overall algorithm in terms of m = |E|
and n = |V |? Explain briefly. You can assume that calculating F takes O(m) work and
O(log n) span.

15–210 Practice Midterm II 7 of 8

Question 5: Treaps (20 points)

(a) (10 points) Assume that priorities are generated using a random hash function h : keys→
[0, 1]. For keys 1, 2, 3, 4, 5, assume the corresponding hash values are as follows.

key 1 2 3 4 5
h(key) 0.4 0.1 0.5 0.2 0.6

What would the Treap look like if we insert the keys 1, 4, 2, 5, 3 in this order?

(b) (10 points) In our analysis of the expected depth of a key in a Treap, we made use of the
following indicator random variable

Aj
i =

{
1 j is an ancestor of i

0 otherwise

Write an expression for Si—the size of a subtree rooted at key i—in terms of Aj
i .

Derive a closed-form expression for E [Si] (you’re allowed to use ln n, Hn, n! and the like
in your expression).

15–210 Practice Midterm II 8 of 8

