
Homework 8 15-210: Parallel and Sequential Data Structures and Algorithms (Spring’12)

tag — Version 1.2 due: tue, apr 24 @ 11:59pm

Disclaimer:
We will not grade non-compiling code.

1 Introduction

In this homework, you’ll design and implement data structures and algorithms that combine ideas from
augmented trees, divide and conquer, and dynamic programming.

1.1 Submission

This assignment is distributed in a number of files in our git repository. Instructions on how to access
that repository can be found at http://www.cs.cmu.edu/~15210/resources/git.pdf. This is
how assignments will be distributed in this course.

This assignment requires that you submit both code and written answers.
Submit your solutions by placing you solution files in your handin directory, located at

/afs/andrew.cmu.edu/course/15/210/handin/<yourandrewid>/assn8/

Name the files exactly as specified below. You can run the check script located at

/afs/andrew.cmu.edu/course/15/210/bin/check/08/check.pl

to make sure that you’ve handed in appropriate files. Do not submit any other files.
Your written answers must be in a file called hw08.pdf and must be typeset. You do not have to use

LATEX, but if you do, we have provided the file defs.tex with some macros you may find helpful.
For the programming part, you’re handing in a total of 6 files:

NaiveIM.sml SmartIM.sml TestIM.sml
NaiveTycoon.sml SmartTycoon.sml TestTycoon.sml

These files must contain all the code that you want to have graded for this assignment and must compile
cleanly. If you have a function that happens to be named the same as one of the required functions but
does not have the required type, it will not be graded.

1.2 Naming Modules

The questions that follow ask you to organized your solutions in a number of modules. Your modules
must be named exactly as stated in the handout. Correct code inside an incorrectly named structure, or
a structure that does not ascribe to the specified signatures, will not receive any credit.

You may not modify any of the signatures or other library code that we give you. We will test your
code against the signatures and libraries that we hand out, so if you modify the signatures your code will
not compile and you will not receive credit.

http://www.cs.cmu.edu/~15210/resources/git.pdf

Homework 8 — Version 1.2 15-210 (Spring 2012)

1.3 The SML/NJ Build System

This assignment includes a substantial amount of library code spread over several files. The compilation
of this is orchestrated by CM through the file sources.cm. Instructions on how to use CM can be found
at on the website at http://www.cs.cmu.edu/~15210/resources/cm.pdf.

1.4 Style

As always, you will be expected to write readable and concise code. If in doubt, you should consult
the style guide at http://www.cs.cmu.edu/~15210/resources/style.pdf or clarify with course
staff. In particular:

1. If the purpose or correctness of a piece of code is not obvious, document it. Ideally, your
comments would convince a reader that your code is correct.

2. You will be required to write tests for any code that you write. In general, you should be in the
habit of thoroughly testing your code for correctness, even if we do not explicitly tell you to do so.

3. Clearly indicate parallelism in your code. Use the provided par and par3 functions in the
library structure Primitives for this purpose.

2 Interval Minimum

The interval minimum (IM) problem is: Given a sequence A and positions L and R, compute the minimum
value between index L and index R; i.e., it computes min

L≤i≤R
A[i].

2.1 Naive Implementation

Task 2.1 (5%). Implement the function

intervalMin : int seq -> (int * int) -> int

in the structure NaiveIM in NaiveIM.sml. Your solution to this task should run in O(n) work and
O(log n) span, where n = |S| is the length of the sequence S. This function should be straightforward to
implement but will be useful in testing your code for the next part.

Of course, there are many ways to correctly implement this function within the given cost bounds.
While perhaps not the most straightforward solution, you might consider developing a divide-and-
conquer algorithm which will help your thinking for the next part of the problem.

2

http://www.cs.cmu.edu/~15210/resources/cm.pdf
http://www.cs.cmu.edu/~15210/resources/style.pdf

Homework 8 — Version 1.2 15-210 (Spring 2012)

2.2 And Now For Something Smarter

For each sequence A, we are often interested in solving the interval minimum problem on multiple
pairs (L, R). In this part, you’ll implement a staged function that performs some preprocessing so that
subsequent queries can be answered more efficiently.

Task 2.2 (25%). Implement the function

intervalMin : int seq -> (int * int) -> int

in the structure SmartIM in SmartIM.sml. Again, consider the simplest divide-and-conquer algorithm
for finding the minimum element of a sequence — how can you use augmented trees? For full credit,
You must stage intervalMin so that the following bounds hold:

val S_mins = intervalMin S O(n) work, O(log n) span
val minLR = S_mins (L,R) O(log n) work, O(log n) span

where n is the length of S. You may wish to examine the solutions to assignment 4 as a reminder on how
to properly stage a function.

Task 2.3 (5%). Complete the structure TestIM in TestIM.sml which tests SmartIM.intervalMin
against NaiveIM.intervalMin.

3 Doing Jon’s Homework

Jon was supposed to write this 15-210 assignment, but he’s behind on his competition programming
practice. Jon decides to kill two birds with one stone; you can do the competition programming for
him. Here’s the problem: http://acm.sgu.ru/problem.php?contest=0&problem=311 (which,
for your convenience, is also reproduced below, with appropriate edits)

Ice Cream Tycoon. You’ve recently started an ice-cream business at Carnegie Mellon University.
During the day you have many suppliers delivering ice-cream to you, and many students buying it
from you. You are not allowed to set the prices, as you are told the selling price for each serving of
ice-cream by the suppliers.

The day is described with a sequence of queries. Each query can be either ARRIVE n c, meaning
that a supplier has delivered n servings of ice-cream each costing c DineX, or BUY n t , meaning
that a student wants to buy n servings of ice-cream with a total of t DineX. The latter is processed
as follows: if your n cheapest servings of ice-cream cost no more than t in total, you sell those n
cheapest servings to the student; otherwise, the student gets nothing. You start the day with no
ice-cream in stock.

For each student, output TARTAN if she gets her ice-cream, and SPARTAN if she doesn’t.

3

http://acm.sgu.ru/problem.php?contest=0&problem=311

Homework 8 — Version 1.2 15-210 (Spring 2012)

Example:

input output
ARRIVE 1 1 TARTAN
ARRIVE 10 200 SPARTAN
BUY 5 900 TARTAN
BUY 5 900
BUY 5 1000

Note that in the above example, even if the first buy request becomes BUY 5 1000, none of the outcomes
change. First of all, Jon has revised the spec for the homework with the following signature:

signature TYCOON =
sig

type t

val empty : unit -> t
val arrive : (t * (int * int)) -> t
val buy : (t * (int * int)) -> (bool * t)

end

The idea is that the type t is some (persistent) internal state which your algorithm keeps track of. Then,
instead of mutating the state, you can pass it in and return it (this is analogous to how we pass around
state for Random). The two functions arrive and buy correspond to the actions ARRIVE and BUY in
the original problem.

• arrive(s, (n,c)) means that given the state s, a supplier delivers n pieces of ice cream priced
at c a piece. Thus, the function returns the state after this action.

• buy(s, (n,t)) means that given the state s, a student with budget t seeks to buy n pieces of ice
cream. Therefore, the function returns a Boolean value indicating whether the student got the ice
cream and the resulting state.

Task 3.1 (5%). Implement empty, arrive and buy in NaiveTycoon.sml. They should each run in
work and span O(number queries so far).

Task 3.2 (25%). Implement empty, arrive and buy in SmartTycoon.sml. They should each run in
work and span O(log(number queries so far)).
(Hint: Treap.sml is a fine upstanding example of a balanced binary search tree, well worth emulating.
What information do you need to store to support arrive and buy?)

Task 3.3 (5%). Test SmartTycoon.sml against NaiveTycoon.sml. Put your tests in TestTycoon.sml.

4

Homework 8 — Version 1.2 15-210 (Spring 2012)

4 LCA and LLR

Do not write code for this question. Write clear English.

You may be wondering, "What does any of this have to do with anything we talked about in class?"
The other TAs sure were. Jon thought, and thought, and eventually Kanat came up with something:

The least common ancestor (LCA) problem is: given a rooted tree on n vertices and vertices x , y in
a tree, compute the root of the smallest subtree that contains both x and y (i.e. their least common
ancestor). There is a straightforward O(n) work/span, O(n) space algorithm to solve this problem. We
can do better.

1

2

3 4

5

1

2

3 4
5

6 7
8

First, we need a different way to think about our tree: the linked
list representation (LLR). The LLR of a tree is a circular linked list of all
the edges in the tree so that if you walked around all the edges in the
order they’re listed you would visit every vertex, use each edge exactly
once in each direction, and get back to where you started (the root).

For example, the tree shown on the left has an LLR (1,2),
(2,3), (3, 2), (2, 4), (4,2), (2,1), (1, 5), (5,1), which then wraps around.
An important property of LLRs is that each edge is listed twice, once
"forwards" and once "in reverse."

There are many ways to construct an LLR, but the following simple
approach is easy to carry out in parallel: Let the neighbors of a vertex

v be given as Nv[0], Nv[1], . . . , Nv[d(v) − 1]. For each edge e = (x , y), the next edge in the LLR is
(y, Ny[(i + 1)mod d(v)]), where i is the index such that x = Ny[i]. This computation is highly parallel
because we can determine which edge comes after an edge (x , y) in the LLR sequence knowing only the
neighbors of x and y , so we can compute the “next” pointer of each edge all in parallel.

Task 4.1 (10%). Prove that if you walk all the edges of the tree according to this LLR, you’ll visit every
vertex, traverse every edge exactly once in each direction, and return to the starting vertex.

Tree Representation: For the following tasks, we’ll assume that the tree T is given as a sequence of
integer sequence (int int seq), where the integer sequence T[i] lists all the neighbors of i. In this
representation, the vertices are numbered between 0 and n− 1. Furthermore, an edge (x , y) appears in
both T[x] and T[y].

4.1 Tree Rooting (Revisited)

As a warm-up exercise for the LCA problem, we’ll take a second look at the tree rooting problem. Recall
from Midterm II that the tree rooting problem is: given an undirected tree T (in the format above) and
a node r, find a tree on the same set of vertices where each of the original edges is directed away from
the root r.

The LLR provides a nice way to root the tree. Suppose you had an unrooted tree (edges in both
directions) and a root. You could still compute the LLR as above. We saw earlier that each edge appears
twice in the LLR: once "forwards" (i.e., away from the root) and once "backwards" (i.e., towards the
root). If we break the LLR at the root node r, the tree rooting problem is exactly the problem of picking
the forward copy of each edge.

5

Homework 8 — Version 1.2 15-210 (Spring 2012)

Task 4.2 (5%). How could you use ideas from list ranking to root a tree, given its LLR? (Hint: remember
that you can do plus scan on a length-n linked list in O(n) work and O(log n) span)

Task 4.3 (5%). How could you compute the depth of each vertex using ideas from list ranking, given the
LLR?

4.2 It’s LCA Time!

Task 4.4 (10%). We’re ready. Describe a staged function LCA (T, r) (x , y) that computes the LCA of x , y
in a tree T which is rooted at r. Your function should meet the following bounds:
val T_LCA = LCA(T,r) O(n) work, O(log2 n) span
val ancestor = T_LCA x y O(log n) work, O(log n) span

(Hint: Use the LLR and interval minimum question)

6

	Introduction
	Submission
	Naming Modules
	The SML/NJ Build System
	Style

	Interval Minimum
	Naive Implementation
	And Now For Something Smarter

	Doing Jon's Homework
	LCA and LLR
	Tree Rooting (Revisited)
	It's LCA Time!

