
Homework 3 15-210: Parallel and Sequential Data Structures and Algorithms (Spring’12)

tag — Version 1.2 due: thu, feb 16 @ 11:59pm (NO LATE DAYS)

1 Introduction

In this homework, you will implement a number of operations on an arbitrary-precision representation
of integers. You will also explore implementing work-optimal SEQUENCE merge with low span. You will
use the Karatsuba multiplication algorithm, as well as scan with different associative binary operators.

1.1 Submission

This assignment is distributed in a number of files in our git repository. Instructions on how to access
that repository can be found at http://www.cs.cmu.edu/~15210/resources/git.pdf. This is
how assignments will be distributed in this course.

This assignment requires that you submit both code and written answers.
Submit your solutions by placing you solution files in your handin directory, located at

/afs/andrew.cmu.edu/course/15/210/handin/<yourandrewid>/assn3/

Name the files exactly as specified below. You can run the check script located at

/afs/andrew.cmu.edu/course/15/210/bin/check/03/check.pl

to make sure that you’ve handed in appropriate files. Do not submit any other files.
Your written answers must be in a file called hw03.pdf and must be typeset. You do not have to use

LATEX, but if you do, we have provided the file defs.tex with some macros you may find helpful.
For the programming part, the only files you’re handing in are

karatsuba-bignum.sml, merge.sml, and lcis.sml

These files must contain all the code that you want to have graded for this assignment and must compile
cleanly. If you have a function that happens to be named the same as one of the required functions but
does not have the required type, it will not be graded.

1.2 Naming Modules

The questions that follow ask you to organized your solutions in a number of modules. Your modules
must be named exactly as stated in the handout. Correct code inside an incorrectly named structure, or
a structure that does not ascribe to the specified signatures, will not receive any credit.

You may not modify any of the signatures or other library code that we give you. We will test your
code against the signatures and libraries that we hand out, so if you modify the signatures your code will
not compile and you will not receive credit.

http://www.cs.cmu.edu/~15210/resources/git.pdf
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1.3 The SML/NJ Build System

This assignment includes a substantial amount of library code spread over several files. The compilation
of this is orchestrated by CM through the file sources.cm. Instructions on how to use CM can be found
at on the website at http://www.cs.cmu.edu/~15210/resources/cm.pdf.

1.4 Style

As always, you will be expected to write readable and concise code. If in doubt, you should consult
the style guide at http://www.cs.cmu.edu/~15210/resources/style.pdf or clarify with course
staff. In particular:

1. If the purpose or correctness of a piece of code is not obvious, document it. Ideally, your
comments would convince a reader that your code is correct.

2. You will be required to write tests for any code that you write. In general, you should be in the
habit of thoroughly testing your code for correctness, even if we do not explicitly tell you to do so.

3. Clearly indicate parallelism in your code. Use the provided par and par3 functions in the
library structure Primitives for this purpose.

2 BigNum Arithmetic

In this problem, you will implement functions to support bignum, or arbitrary-precision arithmetic. Na-
tive hardware integer representations are typically limited to 32 or 64 bits, which is sometimes insuffi-
cient for computations which result in very large numbers. Some cryptography algorithms, for example,
require the use of large primes which require over 500 bits to represent in binary. This motivates the
implementation of an arbitrary-precision representation which can support such operations.

2.1 Logistics

We represent an integer with the type bignum which is defined as a bit seq, where

datatype bit = ZERO | ONE

We adopt the convention that if x is a bignum, then x is non-negative, and x0 is the least-significant bit.
Furthermore, if x represents the number 0, x is an empty sequence—and if x > 0, the right-most bit of
x must be ONE (that is to say, there cannot be any trailing zeros following the most significant ONE bit).
You must follow this convention for your solutions.

Our bignum implementation will support addition, subtraction (assuming the number never goes
negative), and multiplication. You will complete the functor KaratsubaBigNum in karatsuba-bignum.sml,
which ascribes to the signature BIGNUM. To help you get started, the starter code already has the bignum
type declared and the infix operators **, --, ++ defined for you.
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2.2 Specification

2.2.1 Addition

Task 2.1 (30%). Implement the addition function

++ : bignum * bignum -> bignum

in the functor KaratsubaBigNum in karatsuba-bignum.sml. For full credit, on input with m and
n bits, your solution must have O(m+ n) work and O(lg(m+ n)) span. Our solution has 40 lines with
comments.

The main challenge in meeting the cost bound lies in propagating the carry bits. For example, try
adding 1 to (11101111111111)2 and you will see a “ripple effect.” You should use scan to get around
this, but you need to come up with an associative binary operator. As a hint, we have also provided you
with an additional datatype which you may find useful:

datatype carry = GEN | PROP | STOP

where GEN stands for generate, PROP for propagation, and STOP for stop. You might want to work out a
few small examples to understand what is happening. Do you see a pattern in the following example?

1000100011 +
1001101001

For more inspiration, you should look at the copy_scan implementation in the notes for Lecture 5.

2.2.2 Subtraction

Task 2.2 (10%). Implement the subtraction function

-- : bignum * bignum -> bignum

in the functor KaratsubaBigNum in karatsuba-bignum.sml, where x -- y computes the number
obtained by subtracting y from x . We will assume that x ≥ y; that is, the resulting number will always
be non-negative. You should also assume for this problem that ++ has been implemented correctly. For
full credit, if x has n bits, your solution must have O(n) work and O(lg n) span. Our solution has 20 lines
with comments.

Perhaps the easiest way to implement subtraction is to use two’s complement representation for nega-
tion, which you should recall from 15-122 or 15-213. For a quick review: we can represent positive
numbers in k bits from 0 to 2k−1 − 1, reserving the most significant bit as the “sign bit.” For any integer
x representable in k bits in two’s complement, −x is simply the number y such that x + y = 2k. Then,
we can negate x by simply flipping all the bits and adding 1.
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2.2.3 Multiplication

Task 2.3 (20%). Implement the function

** : bignum * bignum -> bignum

in the functor KaratsubaBigNum in karatsuba-bignum.sml. For full credit, if the larger number has
n bits, your solution must have O(nlog2 3) work and O(lg2 n) span. You should assume for this problem
that ++ and -- have been implemented correctly. Our solution has 40 lines with comments.

Recall from lecture the divide-and-conquer solution to n-bit multiplication in O(nlog2 3) work, which
you should use to implement **. This is the Karatsuba algorithm, invented in 1960 by Anatolii Alexee-
vitch Karatsuba. There is no guarantee that the pseudocode in the lecture notes is at all correct—use it
with caution. We have provided you with the function

par3 : (unit -> 'a) * (unit -> 'b) * (unit -> 'c) -> 'a * 'b * 'c

to indicate three-way parallelism in your implementation of Karatsuba.

2.2.4 Testing

The BIGNUM signature exports add, sub, and mult; we’ve also provided you with utility functions to
convert between bignum and SML’s IntInf, so you can test your implement at the REPL. Again, you
will be expected to have tests for your code, but it is up to you how to write these tests.

3 Sequence Merge

Some of you have noticed that the ArraySequence library implementation of merge currently uses
append followed by a sort. This has O(N log N) work and O(log N) span, which obviously does not
fulfill our library cost specifications. Here N is the length of the combined sequence.

In this problem, you will patch our library with a parallel implementation of merge which does meet
the cost bounds of O(N) work and O(log2 N) span, where N is the length of the combined sequence. Our
solution (45 lines) actually meets the O(log N) span bound but we would like to give you some buffer.

You will use the ArraySequence implementation of SEQUENCE and the cost specifications given on
the Resources page.

Task 3.1 (30%). Implement the function

merge : 'a ord -> 'a seq -> 'a seq -> 'a seq

where merge cmp s t takes two arrays sorted according to cmp and returns the sequence resulting
from combining s and t, sorted by the comparison function cmp. The two input sequences may not have
the same length.
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There are many ways to go about solving this problem.We’ll try to gear you towards a simple solution.
Keep in mind the following when you attempt this problem:

(1) You may want to use divide and conquer, but be careful! Remember that increasing the branching
factor can make the call tree shallower.

(2) Binary search is your friend.

(3) Look up the cost specifications of the library functions before you start thinking about your algo-
rithm. Specifically, you may want to take a look at append, especially if you’re planning to use
it in a recursive divide and conquer algorithm. Hint: append has linear work and flatten is a
cheaper alternative to concatenate multiple sequences together.

(4) How fast can you merge small sequences, say each of size O(log N), using a sequential merge?

Task 3.2 (10%). Prove that your algorithm has O(N) work and O(log2 N) span.
You do not need to step through every instruction of your code, but be sure to take into account the

costs of any library functions you use. Cost specifications for them are available on the course website.
You may state without proof that binary search on a sequence of size n takes O(log n) work and span,
but be sure to implement it correctly—remember that splitting and concatenating an array sequence has
linear work!

4 BONUS: Longest Contiguous Increasing Subsequence

Given a sequence of numbers, the longest contiguous increasing subsequence problem is to find the largest
number of contiguous increases in a sequence of numbers. In this problem, you will find the number of
increases in the longest contiguous increasing subsequence of a given sequence. For example,

lcis(〈7, 2,3,4, 1,8〉)

will return 2 since there are 2 increases in a row in the contiguous subsequence 〈2,3, 4〉.

Task 4.1 (0%). Implement the function

lcis : int Seq.seq -> int

which returns the largest number of contiguous increases in the input sequence. For credit, your solution
must use scan and have O(n) work and O(lg n) span.
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