Recitation 6

Treaps

6.1 Announcements

- Midterm 1 is on Friday. You are allowed a single, double-sided, 8.5 \times 11 in sheet of paper for notes.

- *FingerLab* is due next Friday, Oct 14.
6.2 Example

Recall that a treap is a BST with a priority function $p : U \rightarrow \mathbb{Z}$, where U is the universe of keys. You should think of p as a random number generator: for each key, it returns a random integer. A treap has two structural properties:

1. **BST invariant**: For every $\text{Node}(L, k, R)$, we have $\ell < k$ for every ℓ in L, and symmetrically $k < r$ for every r in R.

2. **Heap invariant**: For every $\text{Node}(L, k, R)$, we have that $p(k) > p(x)$ for every x in either L or R.

Task 6.1. Build a treap from the following keys and priorities using two different strategies, and observe that the resulting treap is the same in both cases.

1. Run quicksort, creating a new node every time a pivot is chosen.

2. Beginning with an empty tree, sequentially insert keys in priority-order. Each newly inserted key should be placed at a leaf.

<table>
<thead>
<tr>
<th>k</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(k)$</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Built: October 3, 2016
6.3 Deletion

Consider the following strategy for deleting a key k from a treap:

1. Locate the node containing k,
2. Set the priority of k to be $-\infty$ (note that if k has children, then this breaks the heap invariant of the treap),
3. Restore the heap invariant by rotating k downwards until it has only leaves for children,
4. Delete k by replacing its node with a leaf.

A “rotation” in this case refers to the process of making one of k’s children the root, depending on their relative priorities. For example, if k has two children with priorities p_1 and p_2 where $p_1 > p_2$, we rotate like so:

![Diagram showing a treap rotation]

The case of $p_1 < p_2$ is symmetric. In turns out that this process is equivalent to calling \texttt{join} on the children of k. You should convince yourself of this.

We’re interested in the following: in expectation, how many rotations must we perform before we can delete k?
Let’s set up the specifics: we have a treap T formed from the sorted sequence of keys S, $|S| = n$. We’re interested in deleting the key $S[d]$. Let T' be the same treap, except that the priority of $S[d]$ is now $-\infty$.

We need a couple indicator random variables:

$$X^i_j = \begin{cases} 1, & \text{if } S[i] \text{ is an ancestor of } S[j] \text{ in } T \\ 0, & \text{otherwise} \end{cases}$$

$$\left(X'\right)^i_j = \begin{cases} 1, & \text{if } S[i] \text{ is an ancestor of } S[j] \text{ in } T' \\ 0, & \text{otherwise} \end{cases}$$

Task 6.2. Write R_d, the number of rotations necessary to delete $S[d]$, in terms of the given random variables.

The number of rotations is equal to the number of nodes which aren’t an ancestor of $S[d]$ in T, but are in T'. Therefore we have

$$R_d = \sum_{i=0}^{n-1} \left(X'\right)^i_d - \sum_{i=0}^{n-1} X^i_d$$

Task 6.3. Give $E\left[X^i_d\right]$ and $E\left[\left(X'\right)^i_d\right]$ in terms of i and d.

We have both $X^i_d = 1$ and $\left(X'\right)^i_d = 1$ if $S[i]$ has the largest priority among the $|d-i|+1$ keys between $S[i]$ and $S[d]$. However, notice that in the latter case, we already know that the priority of $S[i]$ is larger than that of $S[d]$, unless $i = d$. So we only need that $S[i]$ is the largest among the $|d-i|$ significant keys in this range. Therefore:

$$E\left[X^i_d\right] = \begin{cases} 1, & \text{if } i = d \\ \frac{1}{|d-i|+1}, & \text{otherwise} \end{cases}$$

$$E\left[\left(X'\right)^i_d\right] = \begin{cases} 1, & \text{if } i = d \\ \frac{1}{|d-i|}, & \text{otherwise} \end{cases}$$

Built: October 3, 2016
Task 6.4. Compute $E[R_d]$. For simplicity, you may assume $1 \leq d \leq n - 2$.

\[
E[R_d] = \sum_{i=0}^{n-1} E[(X')^i_d] - \sum_{i=0}^{n-1} E[X^i_d]
\]

\[
= \left(\sum_{i=0}^{d-1} E[(X')^i_d] + 1 + \sum_{i=d+1}^{n-1} E[(X')^i_d] \right) - \left(\sum_{i=0}^{d-1} E[X^i_d] + 1 + \sum_{i=d+1}^{n-1} E[X^i_d] \right)
\]

\[
= \left(\sum_{i=0}^{d-1} \frac{1}{d-i} + \sum_{i=d+1}^{n-1} \frac{1}{i-d} \right) - \left(\sum_{i=0}^{d-1} \frac{1}{d-i+1} + \sum_{i=d+1}^{n-1} \frac{1}{i-d+1} \right)
\]

\[
= (H_d + H_{n-d-1}) - (H_{d+1} - 1 + H_{n-d} - 1)
\]

\[
= 2 + (H_d - H_{d+1}) + (H_{n-d-1} - H_{n-d})
\]

\[
= 2 - \frac{1}{d+1} - \frac{1}{n-d}
\]

\[\leq 2\]
6.4 Additional Exercises

Exercise 6.5. *Describe an algorithm for inserting an element into a treap by “undoing” the deletion process described in Section 6.3.*

Exercise 6.6. *For treaps, suppose you are given implementations of find, insert, and delete. Implement split and joinMid in terms of these functions. You’ll need to “hack” the keys and priorities; i.e., assume you can do funky things like insert a key with a specific priority.*

Exercise 6.7. *Given a set of key-priority pairs \((k_i, p_i) : 0 \leq i < n\) where all of the \(k_i\)'s are distinct and all of the \(p_i\)'s are distinct, prove that there is a unique corresponding treap \(T\).*

6.4.1 Selected Solutions

Exercise 6.6.

- Implement \(\text{split}(T, k)\) as follows. First, determine if \(k\) is present in \(T\) via \(\text{find}\). Then, insert \(k\) with priority \(\infty\) into \(T\). The resulting treap will have the form \(\text{Node}(L, k, R)\). We then return \((L, m, R)\), where \(m\) was the result of the \(\text{find}\).

- Implement \(\text{joinMid}(L, k, R)\) as follows. Set \(p(k) = \infty\), and then let \(T = \text{delete}((\text{Node}(L, k, R), k))\). Finally, restore \(p(k)\) to its correct value, and finish with \(\text{insert}(T, k)\).