Recitation 6

Treaps

6.1 Announcements

- Midterm 1 is on Friday. You are allowed a single, double-sided, 8.5 × 11 in sheet of paper for notes.

- *FingerLab* is due next Friday, Oct 14.
6.2 Example

Recall that a treap is a BST with a priority function $p : U \to \mathbb{Z}$, where U is the universe of keys. You should think of p as a random number generator: for each key, it returns a random integer. A treap has two structural properties:

1. BST invariant: For every node (L, k, R), we have $\ell < k$ for every ℓ in L, and symmetrically $k < r$ for every r in R.

2. Heap invariant: For every node (L, k, R), we have that $p(k) > p(x)$ for every x in either L or R.

Task 6.1. Build a treap from the following keys and priorities using two different strategies, and observe that the resulting treap is the same in both cases.

1. Run quicksort, creating a new node every time a pivot is chosen.

2. Beginning with an empty tree, sequentially insert keys in priority-order. Each newly inserted key should be placed at a leaf.

<table>
<thead>
<tr>
<th>k</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(k)$</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Built: October 3, 2016
6.3 Deletion

Consider the following strategy for deleting a key \(k \) from a treap:

1. Locate the node containing \(k \),
2. Set the priority of \(k \) to be \(-\infty\) (note that if \(k \) has children, then this breaks the heap invariant of the treap),
3. Restore the heap invariant by rotating \(k \) downwards until it has only leaves for children,
4. Delete \(k \) by replacing its node with a leaf.

A “rotation” in this case refers to the process of making one of \(k \)’s children the root, depending on their relative priorities. For example, if \(k \) has two children with priorities \(p_1 \) and \(p_2 \) where \(p_1 > p_2 \), we rotate like so:

\[
\begin{array}{c}
\text{\(\infty \)} \\
\text{\(p_1 \)} & \text{\(p_2 \)} \\
\text{\(A \)} & \text{\(B \)} & \text{\(C \)} & \text{\(D \)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(p_1 \)} \\
\text{\(p_2 \)} \\
\text{\(A \)} & \text{\(B \)} & \text{\(C \)} & \text{\(D \)} \\
\end{array}
\]

The case of \(p_1 < p_2 \) is symmetric. In turns out that this process is equivalent to calling `join` on the children of \(k \). You should convince yourself of this.

We’re interested in the following: in expectation, how many rotations must we perform before we can delete \(k \)?
Let’s set up the specifics: we have a treap T formed from the sorted sequence of keys S, $|S| = n$. We’re interested in deleting the key $S[d]$. Let T' be the same treap, except that the priority of $S[d]$ is now $-\infty$.

We need a couple indicator random variables:

$$X^i_j = \begin{cases}
1, & \text{if } S[i] \text{ is an ancestor of } S[j] \text{ in } T \\
0, & \text{otherwise}
\end{cases}$$

$$(X')^i_j = \begin{cases}
1, & \text{if } S[i] \text{ is an ancestor of } S[j] \text{ in } T' \\
0, & \text{otherwise}
\end{cases}$$

Task 6.2. Write R_d, the number of rotations necessary to delete $S[d]$, in terms of the given random variables.

Task 6.3. Give $E[X^i_d]$ and $E[(X')^i_d]$ in terms of i and d.

Task 6.4. Compute $E[R_d]$. For simplicity, you may assume $1 \leq d \leq n - 2$.
6.4 Additional Exercises

Exercise 6.5. Describe an algorithm for inserting an element into a treap by “undoing” the deletion process described in Section 6.3.

Exercise 6.6. For treaps, suppose you are given implementations of find, insert, and delete. Implement split and joinMid in terms of these functions. You’ll need to “hack” the keys and priorities; i.e., assume you can do funky things like insert a key with a specific priority.

Exercise 6.7. Given a set of key-priority pairs \((k_i, p_i) : 0 \leq i < n\) where all of the \(k_i\)’s are distinct and all of the \(p_i\)’s are distinct, prove that there is a unique corresponding treap \(T\).