Recitation 11

Graph Contraction and MSTs

11.1 Announcements

- SegmentLab has been released, and is due Monday afternoon. It’s worth 135 points.
- Midterm 2 is on Friday, November 11.
11.2 Contraction

In the textbook, we presented an algorithm for counting the number of connected components in a graph:

Algorithm 11.1. *(Algorithm 17.22 in the textbook.)*

1. \(\text{countComponents} (V, E) = \)
2. \(\text{if } |E| = 0 \text{ then } |V| \text{ else} \)
3. \(\text{let} \)
4. \((V', P) = \text{starPartition} (V, E) \)
5. \(E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\} \)
6. \(\text{in} \)
7. \(\text{countComponents} (V', E') \)
8. \(\text{end} \)

with \text{starPartition} implemented as follows:

Algorithm 11.2. *(Algorithm 17.15 in the textbook.)*

1. \(\text{starPartition} (V, E) = \)
2. \(\text{let} \)
3. \(TH = \{(u, v) \in E \mid \neg \text{heads}(u) \land \text{heads}(v)\} \)
4. \(P = \bigcup_{(u, v) \in TH} \{u \mapsto v\} \)
5. \(V' = V \setminus \text{domain}(P) \)
6. \(P' = \{u \mapsto u : u \in V'\} \)
7. \(\text{in} \)
8. \((V', P' \cup P) \)
9. \(\text{end} \)

Now, suppose we implemented star partitioning for enumerated graphs as follows:

\(\text{val enumStarPartition : (int * int) Seq.t * int } \to \text{ int Seq.t} \)

Specifically, given a graph represented as a sequence of edges \(E \) where every vertex is labeled \(0 \leq v < n \), \((\text{enumStarPartition} (E, n))\) returns a mapping \(P \) where \(P[v] \) is the super-vertex containing \(v \). (If \(v \) was a star center or was unable to contract, then \(P[v] = v \).)

Task 11.3. Implement a function \(\text{enumCountComponents} \) which counts the number of components of an enumerated graph. It should take in a graph represented as \((E, n)\) and use \(\text{enumStarPartition} \) internally.
11.2.1 Cost Bounds

Task 11.4. Recall that a forest is a collection of trees. What are the work and span of `enumCountComponents` when applied to a forest? Assume that `enumStarPartition(E, n)` requires $O(n + |E|)$ work and $O(\log n)$ span.
11.3 Borůvka’s Algorithm

The textbook describes two versions of Borůvka’s algorithm: one which performs tree contraction at each round, and another which performs a single round of star contraction at each round. We will be using the latter, since it has better overall span ($O(\log^2 n)$ rather than $O(\log^3 n)$).

Task 11.5. Run Borůvka’s algorithm on the following graph. Draw the graph at each round, and identify which edges are MST edges. Use the coin flips specified.
11.4 Additional Exercises

Exercise 11.6. In graph theory, an independent set is a set of vertices for which no two vertices are neighbors of one another. The maximal independent set (MIS) problem is defined as follows:

For a graph \((V, E)\), find an independent set \(I \subseteq V\) such that for all \(v \in (V \setminus I)\), \(I \cup \{v\}\) is not an independent set.\(^a\)

Design an efficient parallel algorithm based on graph contraction which solves the MIS problem.

\(^a\)The condition that we cannot extend such an independent set \(I\) with another vertex is what makes it “maximal.” There is a closely related problem called maximum independent set where you find the largest possible \(J\). However, this problem turns out to be NP-hard!