15–210: Parallel and Sequential Data Structures and Algorithms

Practice Exam I (Solutions)

October 2016

- There are 13 pages in this examination, comprising 7 questions worth a total of 110 points. The last few pages are an appendix detailing some of the 15-210 library functions and their cost bounds.

- You have 80 minutes to complete this examination.

- Please answer all questions in the space provided with the question. Clearly indicate your answers.

- You may refer to your one double-sided 8\(\frac{1}{2}\) × 11in sheet of paper with notes, but to no other person or source, during the examination.

Circle the section YOU ATTEND

<table>
<thead>
<tr>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 9:30am - 10:20am</td>
</tr>
<tr>
<td>B 10:30am - 11:20am</td>
</tr>
<tr>
<td>C 12:30pm - 1:20pm</td>
</tr>
<tr>
<td>D 12:30pm - 1:20pm</td>
</tr>
<tr>
<td>E 1:30pm - 2:20pm</td>
</tr>
<tr>
<td>F 3:30pm - 4:20pm</td>
</tr>
<tr>
<td>G 4:30pm - 5:20pm</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Recurrences</td>
</tr>
<tr>
<td>Short Answers</td>
</tr>
<tr>
<td>Missing Element</td>
</tr>
<tr>
<td>Interval Containment</td>
</tr>
<tr>
<td>Quicksort</td>
</tr>
<tr>
<td>Parentheses Revisited</td>
</tr>
<tr>
<td>Treaps</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>
Question 1: Recurrences (16 points)
Recall that $f(n)$ is $\Theta(g(n))$ if $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$. Give a closed-form solution in terms of Θ for the following recurrences. Also, state whether the recurrence is dominated at the root, the leaves, or equally at all levels of the recurrence tree.

You do not have to show your work, but it might help you get partial credit.
(a) (4 points) $f(n) = 5f(n/5) + \Theta(n)$

Solution: $\Theta(n \log n)$, balanced.

(b) (4 points) $f(n) = 3f(n/2) + \Theta(n^2)$

Solution: $\Theta(n^2)$, root-dominated.

(c) (4 points) $f(n) = f(n/2) + \Theta(\log n)$

Solution: $\Theta(\log^2 n)$, approximately balanced.

(d) (4 points) $f(n) = 5f(n/8) + \Theta(n^{2/3})$

Solution: $\Theta(n^{\log_8 5})$ (roughly $\Theta(n^{0.77})$) leaf-dominated.
Question 2: Short Answers (21 points)

(a) (5 points) Assume you are given a function \(f : \text{int Seq.t} \times \text{int Seq.t} \rightarrow \text{int Seq.t} \) where \(f(A,B) \) requires \(O\left((|A| + |B|)^2 \right) \) work and \(O(\log(|A| + |B|)) \) span, and returns a sequence of length \(|A| + |B|\). Give the work and span of the following function as tight Big-O bounds in terms of \(|S|\).

\[
\text{fun foo S =}
\text{Seq.reduce f (Seq.empty ()) (Seq.map Seq.singleton S)}
\]

\textbf{Solution:} Work: \(O(|S|^2) \). Span: \(O(\log^2 |S|) \)

(b) (7 points) Suppose we implement a function \texttt{fastJoin} which has the same specification as the BST function \texttt{join}, except that it requires only \(O(\log(\min(|T_1|,|T_2|))) \) work and span for inputs \(T_1 \) and \(T_2 \). Give the work and span of the following function as tight Big-O bounds in terms of \(|S|\). Assume \(S \) is presorted by key.

\[
\text{fun bar S =}
\text{Seq.scan Tree.fastJoin (Tree.empty ()) (Seq.map Tree.singleton S)}
\]

\textbf{Solution:} Work: \(O(|S|) \). Span: \(O(\log^2 |S|) \).

(c) (5 points) Implement \texttt{reduce} using contraction. You can assume the input length is a power of 2.

\[
\textbf{Solution:}
\begin{align*}
\text{fun reduce f b s =} \\
\quad \text{case length s of} \\
\quad 0 => b \\
\quad 1 => f(b, nth s 0) \\
\quad n => \\
\quad \text{let} \\
\quad \quad val x = tabulate (fn i => case i = (n div 2) of \\
\quad \quad \quad \text{true} => (nth s (2*i)) \\
\quad \quad \quad _ => f(nth s (2*i), nth s (2*i + 1))) \\
\quad \quad (((n-1) div 2)+1) \\
\quad \quad \text{in reduce f b x} \\
\quad \text{end}
\end{align*}
\]
(d) **Guessing Games** I am thinking of a random non-negative integer, X. Of course, I can’t mean *uniformly* random, as that would mean that at least half the time I’m thinking of an infinite integer! As it turns out, the expected value of positive integers I think of is 1000.

i. (4 points) For some reason, I like to choose 15210 a lot. Give an upper bound on the probability with which I can choose $X = 15210$ (while still obeying the condition $E[X] = 1000$).

Solution: From Markov’s inequality,

$$\Pr [X \geq 15210] \leq \frac{E[X]}{15210}$$

So, $\Pr [X = 15210] \leq 1000/15210$. Equivalently, you could assume that I only think of the numbers 0 and 15210, and solve from there.
Question 3: Missing Element (12 points)
For 15210, there is a roster of \(n \) unique Andrew ID’s, each a string of at most 9 characters long (so \texttt{String.compare} costs \(O(1) \)).

In this problem, the roster is given as a sorted string sequence \(R \) of length \(n \). Additionally, you are given another sequence \(S \) of \(n - 1 \) unique ID’s from \(R \). The sequence \(S \) is not necessarily sorted. Your task is to design and code a divide-and-conquer algorithm to find the missing ID.

(a) (7 points) Write an algorithm in SML that has \(O(n) \) work and \(O(\log^2 n) \) span.

```sml
open ArraySequence
fun missing_elt(R: string seq, S: string seq) : string =
  let fun lessThan a b = (String.compare(b, a)=LESS) (* is b<a? *)
  in
    case (length R)
    of 0 => raise Fail "should not get here"
      | 1 => nth R 0
      | n =>
        let val p = nth R (n div 2)
            val Sleft = filter (lessThan p) S
            val Sright = filter (not o (lessThan p)) S
            val Rleft = take (R, n div 2)
            val Rright = drop (R, n div 2)
        in
          if (length Sleft < length Rleft) then
            missing_elt (Rleft, Sleft)
          else
            missing_elt (Rright, Sright)
        end
  end
end
```

(b) (5 points) Give a brief justification of why your algorithm meets the cost bounds.

\textbf{Solution:} We maintain the variant that \(|R| = |S| + 1 \). The body of the function contains only 	exttt{filter}, 	exttt{take}, and 	exttt{drop}, which have \(\Theta(|R|) \) work and \(\Theta(\log |R|) \) span. Furthermore, the algorithm makes only one recursive call on the problem of size \(|R|/2 \), so we have \(W(n) = W(n/2) + \Theta(n) \) and \(S(n) = S(n/2) + \Theta(\log n) \). These recurrences solve to \(W(n) = \Theta(n) \) and \(S(n) = \Theta(\log^2 n) \).
Question 4: Interval Containment (13 points)
An interval is a pair of integers \((a,b)\). An interval \((a,b)\) is contained in another interval \((\alpha,\beta)\) if \(\alpha < a\) and \(b < \beta\). In this problem, you will design an algorithm

\[
\text{count: } (\text{int} \times \text{int}) \text{ seq } \rightarrow \text{int}
\]
which takes a sequence of intervals (i.e., ordered pairs) \((a_0,b_0),(a_1,b_1),\ldots,(a_{n-1},b_{n-1})\) and computes the number of intervals that are contained in some other interval. If an interval is contained in multiple intervals, it is counted only once.

For example, \(\text{count } \langle (0,6),(1,2),(3,5) \rangle = 2\) and \(\text{count } \langle (1,5),(2,7),(3,4) \rangle = 1\). Notice that the interval \((3,4)\) is contained in both \((1,5)\) and \((2,7)\), but the count is 1.

You can assume that the input to your algorithm is sorted in increasing order of the first coordinate and that all the coordinates (the \(a_i\)'s and \(b_i\)'s) are distinct.

(a) (5 points) Give a brute force solution to this problem (code or prose).

Solution:
```
open ArraySequence

fun count s = 
  let fun or (p,q) = p orelse q
    fun inOther (a,b) =
      reduce or false (map (fn (x,y) => (x < a) andalso (b < y)) s)
    in reduce (op+) 0 (map (fn iv => if inOther iv then 1 else 0) s)
  end
```

(b) (8 points) Design an algorithm that has \(O(n)\) work and \(O(\log n)\) span. Carefully explain your algorithm; you don’t have to write code. Hint: The algorithm is short.

Solution:
```
open ArraySequence

fun count (s : (int*int) seq) = 
  let val ends = map (fn (_,b) => b) s 
    val (maxCovered, _) = scan Int.max (Option.valOf Int.minInt) ends 
    fun inOther ((a,b), covered) =
      if b < covered then 1 else 0 
  in reduce (op+) 0 (zipWith inOther (s, maxCovered))
  end
```
Question 5: Quicksort (17 points)
Assume throughout that all keys are distinct.

(a) (3 points) TRUE or FALSE. In randomized quicksort, each key is involved in the same number of comparisons.

Solution: FALSE

(b) (7 points) What is the probability that in randomized quicksort, a random pivot selection on an input of n keys leads to recursive calls, both of which are no smaller than $\frac{n}{16}$? Show your work.

Solution: $\frac{7}{8}$

(c) (7 points) Consider running randomized quicksort on a permutation of $1,\ldots,n$. What is the probability that a quicksort call tree has height exactly n? Note: the height of a tree is the number of nodes on its longest path.

Solution: This happens only when we pick the maximum or the minimum element in the input repeatedly. The probability of that is:

$$\frac{2}{n} \times \frac{2}{n-1} \times \cdots \times \frac{2}{2} = \frac{2^{n-1}}{n!}$$
Question 6: Parentheses Revisited (16 points)

A parenthesis expression is called **immediately paired** if it consists of a sequence of open-close parentheses — that is, of the form "()()() ... ()".

(a) (8 points) **Longest immediately paired subsequence (LIPS) problem.** Given a (not necessarily matched) parenthesis sequence \(s \), the longest immediately paired subsequence problem requires finding a (possibly non-contiguous) longest subsequence of \(s \) that is immediately paired. For example, the LIPS of "((((((()()())()())())())(()())") is "()()()()()" as highlighted in the original sequence.

Write a function that computes the **length** of a LIPS for a given sequence. Your function should have \(O(n) \) work and \(O(\log n) \) span.

(Hint: Try to find a property that simplifies computing LIPS. This problem might be difficult to solve otherwise.)

```
datatype paren = L | R
fun findLIPS (s: paren Seq.t) : int =

Solution: The algorithm simply extracts immediately paired parentheses and counts them. We prove below why this is sufficient.

fun findLIPS (s: paren Seq.t) =
  let
    fun isIP i =
      case (Seq.nth s i, Seq.nth s (i+1))
      of (L, R) => 2
           | _ => 0
    in
      Seq.reduce op+ 0 (Seq.tabulate isIP (Seq.length s - 1))
  end
```

(b) (8 points) Prove succinctly that your algorithm correctly computes LIPS.

Solution: Consider any parenthesis expression and let () be an immediately paired parenthesis in the result. Let \(i \) and \(j \) be the positions of the parenthesis in the original sequence. Note that \(i < j \). Let \(k \) be the leftmost RPAREN and note that \(i < k \leq j \) and the parenthesis at \(k - 1 \) and \(k \) are immediately paired. In other words, there exists one immediately paired parentheses in the contiguous subsequence defined by \(i \) and \(j \), e.g., "(...)(...)", "(...)", "(...)". It thus suffices to count the immediately paired parenthesis in the input.
Question 7: Treaps (15 points)

(a) (5 points) Suppose we have the keys 1, 2, 3, 4, 5, 6 with priorities p shown below:

<table>
<thead>
<tr>
<th>key</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(key)</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Draw the max-treap (requires that priority at a node is greater than the priority of its two children) associated with inserting the keys in the order A, B, G, F, C, E, D.

Solution: Recall that Treaps are unique with a given set of keys and priorities. The only possible solution is:

```
    D
   / \
  B   F
 / \ / \
A   C E   G
```

(b) (3 points) What is the probability that the root of a treap has a left or right subtree of size $(n - 3)$, where n is the size of the tree and $n > 5$.

Solution: $\frac{2}{n}$. The root must either be the 3rd smallest or 3rd largest key and have the largest priority.
(c) (7 points) In our analysis of the expected depth of a key in a treap, we made use of the following indicator random variable

\[X^i_j = \begin{cases} 1 & \text{if the } j^{th} \text{ largest key is an ancestor of the } i^{th} \text{ largest} \\ 0 & \text{otherwise} \end{cases} \]

i. For a treap of size \(n \), let \(S_i \) be the size of a subtree rooted at key \(i \). Write an expression for \(S_i \) in terms of these indicator random variables.

Solution: \(S_i = \sum_{j=1}^{n} X^i_j \)

ii. Derive a closed-form expression for \(E[S_i] \) in terms of \(\ln n, H_n, n! \) and the like, and then in big-O notation.

Solution:

\[
E[S_i] = \sum_{j=1}^{n} 1/(|j - i| + 1) \\
= H_i + H_{n-i+1} - 1 \\
= O(\log n)
\]

iii. TRUE or FALSE: The size of the subtree rooted at key \(i \) is within a constant factor of \(E[S_i] \) with high probability.

Solution: FALSE. By metareasoning it cannot be so since many nodes in a tree will have subtrees that are bigger than \(O(\log n) \) and as much as \(O(n) \).
Appendix: Library Functions

signature SEQUENCE =
sig
 type 'a t
 type 'a seq = 'a t
 type 'a ord = 'a * 'a -> order
datatype 'a listview = NIL | CONS of 'a * 'a seq
datatype 'a treeview = EMPTY | ONE of 'a | PAIR of 'a seq * 'a seq

exception Range
exception Size

val nth : 'a seq -> int -> 'a
val length : 'a seq -> int
val toList : 'a seq -> 'a list
val toString : ('a -> string) -> 'a seq -> string
val equal : ('a * 'a -> bool) -> 'a seq * 'a seq -> bool

val empty : unit -> 'a seq
val singleton : 'a -> 'a seq
val tabulate : (int -> 'a) -> int -> 'a seq
val fromList : 'a list -> 'a seq

val rev : 'a seq -> 'a seq
val append : 'a seq * 'a seq -> 'a seq
val flatten : 'a seq seq -> 'a seq

val filter : ('a -> bool) -> 'a seq -> 'a seq
val map : ('a -> 'b) -> 'a seq -> 'b seq
val zip : 'a seq * 'b seq -> ('a * 'b) seq
val zipWith : ('a * 'b -> 'c) -> 'a seq * 'b seq -> 'c seq

val enum : 'a seq -> (int * 'a) seq
val filterIdx : (int * 'a -> bool) -> 'a seq -> 'a seq
val mapIdx : (int * 'a -> 'b) -> 'a seq -> 'b seq
val update : 'a seq * (int * 'a) -> 'a seq
val inject : 'a seq * (int * 'a) seq -> 'a seq

val subseq : 'a seq -> int * int -> 'a seq
val take : 'a seq -> int -> 'a seq
val drop : 'a seq -> int -> 'a seq
val splitHead : 'a seq -> 'a listview
val splitMid : 'a seq -> 'a treeview
val iterate : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b
val iteratePrefixes : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b seq * 'b
val iteratePrefixesIncl : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b seq
val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
val scan : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq * 'a
val scanIncl : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq
val sort : 'a ord -> 'a seq -> 'a seq
val merge : 'a ord -> 'a seq * 'a seq -> 'a seq
val collect : 'a ord -> ('a * 'b) seq -> ('a * 'b seq) seq
val collate : 'a ord -> 'a seq ord
val argmax : 'a ord -> 'a seq -> int
val $: 'a -> 'a seq
val % : 'a list -> 'a seq

end

<table>
<thead>
<tr>
<th>ArraySequence</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty ()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>singleton a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length s</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>nth s i</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>subseq s (i, len)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tabulate f n</td>
<td>$O \left(\sum_{i=0}^{n-1} W_i \right)$</td>
<td>$O \left(\max_{i=0}^{n-1} S_i \right)$</td>
</tr>
<tr>
<td>map f s</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>zipWith f (s, t)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>reduce f b s</td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td>scan f b s</td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td>filter p s</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>flatten s</td>
<td>$O \left(\sum_{i=0}^{n-1} (1 +</td>
<td>s[i]</td>
</tr>
<tr>
<td>sort cmp s</td>
<td>$O(n \lg n)$</td>
<td>$O(\lg^2 n)$</td>
</tr>
<tr>
<td>merge cmp (s, t)</td>
<td>$O(m + n)$</td>
<td>$O(\lg(m + n))$</td>
</tr>
<tr>
<td>append (s, t)</td>
<td>$O(m + n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>