Parallel and Sequential Data Structures and Algorithms — Lecture 6 15-210 (Fall 2012)

Lecture 6 — Sequences Il
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2012)

Lectured by Guy Blelloch — September 13, 2012

Material in this lecture: Today’s lecture is about reduction.
- Scan implementation (from the last lecture notes)
- Divide-and-conquer with reduction
- Cost of reduce when f is not constant work

1 Reduce Operation

Recall that reduce function has the interface

reduce fIS:(axa—a)—a—aseq—a

When the combining function f is associative—i.e., f(f(x,¥),2) = f(x, f(y,2)) for all x,y and
z of type a—reduce returns the sum with respect to f of the input sequence S. It is the same result
returned by iter f I S. The reason we include reduce is that it is parallel, whereas iter is strictly
sequential. Note, though, iter can use a more general combining function with type: § X a — f3.

The results of reduce and iter, however, may differ if the combining function is non-associative.
In this case, the order in which the reduction is performed determines the result; because the function
is non-associative, different orderings will lead to different answers. While we might try to apply
reduce to only associative operations, unfortunately even some functions that seem to be associative
are actually not. For instance, floating point addition and multiplication are not associative. In
SML/NJ, integer addition is also not associative because of the overflow exception.

To properly deal with combining functions that are non-associative, it is therefore important to
specify the order that the combining function is applied to the elements of a sequence. This order is
part of the specification of the ADT Sequence. In this way, every (correct) implementation returns
the same result when applying reduce; the results are deterministic regardless of what data structure
and algorithm are used.

For this reason, we define a specific combining tree, which is defined quite carefully in the library
documentation for reduce. This tree is the same as if we rounded up the length of the input sequence
to the next power of 2, i.e., |x| = 2%, and then put a perfectly balanced binary tree' over the sequence
with 2¥ leaves. Wherever we are missing children in the tree, we don’t apply the combining function.
An example is shown in the following figure.

‘tLecture notes by Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.
LA perfect binary tree is a tree in which every node other than the leaves have exactly 2 children.

1 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 6 15-210 (Fall 2012)

gk = combine ="dummy" elements

X. X, X X, X X,
X4 Xo X3 X4 X5 Xg 1 2 3 4 5 6

In the next lecture we will offer an explanation why we chose this particular combining order.

1.1 Divide and Conquer with Reduce

Now, let’s look back at divide-and-conquer algorithms you have encountered so far. Many of these
algorithms have a “divide” step that simply splits the input sequence in half, proceed to solve the
subproblems recursively, and continue with a “combine” step. This leads to the following structure
where everything except what is in boxes is generic, and what is in boxes is specific to the particular
algorithm.

1 fun myDandC(S)=
2 case showt(S) of
3 EMPTY = | emptyVal
4 | ELT(v) =|base |(v)
5 | NODE(L, R) = let
6
7
8
9

val (L’,R") = (myDandC(L) || myDandC(R))
in

someMessyCombine |(L’,R’)

end

Algorithms that fit this pattern can be implemented in one line using the sequence reduce
function. You have seen this in Homework 1 in which we asked for a reduce-based solution for the
stock market problem. Turning such a divide-and-conquer algorithm into a reduce-based solution is
as simple as invoking reduce with the following parameters:

reduce | someMessyCombine | | emptyVal | (map S)

We will take a look two examples where reduce can be used to implement a relatively sophisti-
cated divide-and-conquer algorithm. The first example we will consider today; the second we will
considered in the next lecture.

2 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 6 15-210 (Fall 2012)

Algorithm 4: MCSS Using Reduce.

The first example is the Maximum Contiguous Subsequence Sum problem from last lecture. Given a
sequence S of numbers, find the contiguous subsequence that has the largest sum—more formally:

k=i

J
mcss(s)zmax{Zsk : 15i§n,i§j§n}.

Recall that the divide-and-conquer solution involved returning four values from each recursive
call on a sequence S: the desired result mcss(S), the maximum prefix sum of S, the maximum suffix
sum of S, and the total sum of S. We will denote these as M, P, S, T, respectively. To solve the mcss
problem we can then use the following implementations for combine, base, and emptyVal:

fun combine((M,P;,S;, T;),(Mg,Pg,Sg, T)) =
(max(Sy, + Pr, My, Mg), max(Py, T, + Pg), max(Sg,S; + Tg), T+ Tg)

fun base(v)=(v,v,v,v)

val emptyVal = (—o0,—00,—00,0)
and then solve the problem with:

fun mcss(S) =
reduce combine emptyVal (map base S)

Stylistic Notes. We have just seen that we could spell out the divide-and-conquer steps in detail
or condense our code into just a few lines that take advantage of the almighty reduce. So which is
preferable, using the divide-and-conquer code or using reduce? We believe this is a matter of taste.
Clearly, your reduce code will be (a bit) shorter, and for simple cases easy to write. But when the
code is more complicated, the divide-and-conquer code is easier to read, and it exposes more clearly
the inductive structure of the code and so is easier to prove correct.

Restriction. You should realize, however, that this pattern does not work in general for divide-and-
conquer algorithms. In particular, it does not work for algorithms that do more than a simple split
that partitions their input in two parts in the middle. For example, it cannot be used for implementing
quick sort as the divide step partitions the data with respect to a pivot. This step requires picking a
pivot, and then filtering the data into elements less than, equal, and greater than the pivot.

2 Analyzing the Costs of Higher Order Functions

Last lecture we looked at using reduce to solve divide-and-conquer problems. In the example we
gave, the maximum increasing subsequence sum, the combining function f had O(1) cost (i.e., both
its work and span are constant). In that case the cost specifications of reduce on a sequence of

3 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 6 15-210 (Fall 2012)

length n is simply O(n) work and O(logn) span. Does that hold true when the combine function does
not have constant cost?

For map it is easy to find its costs base on the cost of the function applied:

WmapfS) = 1+ ,W(f(s)
seS
Smap fS) = 1+r§1€aSXS(f(s))

Tabulate is similar. But can we do the same for reduce?

Merge Sort. As an example, let’s consider merge sort. As you have likely seen from previous courses
you have taken, merge sort is a popular divide-and-conquer sorting algorithm with optimal work. It
is based on a function merge that takes two already sorted sequences and returns a sorted sequence
containing all elements from both sequences. We can use our reduction technique for implementing
divide-and-conquer algorithms to implement merge sort with a reduce. In particular, we can write a
version of merge sort, which we refer to as reduceSort, as follows:

val combine =merge_

val base =singleton

val emptyVal = empty()

fun reduceSort(S) =reduce combine emptyVal (map base S)

where merge_ is a merge function that uses an (abstract) comparison operator <. Note that merging
is an associative function.

Assuming a constant work comparison function, two sequences S; and S, with lengths n; and n,
can be merged with the following costs:

W(merge_(S1,S;3)) = O(ny +ny)
S(merge_(S1,52)) O(log(n; + ny))

What do you think the cost of reduceSort is?

2.1 Reduce: Cost Specifications

We want to analyze the cost of reduceSort. Does the reduction order matter? As mentioned before,
if the combining function is associative, which it is in this case, all reduction orders give the same
answer so it seems like it should not matter.

To answer this question, let’s consider the reduction order we get by sequentially adding the
elements in one after the other. On input x = (xq, x,, ..., X,), the sequence of merge_ calls looks
like the following:

merge_(... merge_(merge_(merge_(I,{x;)),{x5)),{(x3)),...)

4 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 6 15-210 (Fall 2012)

i.e. we first merge I and ( x; ), then merge in { x, ), then ( x3 ), etc.

With this order merge_ is called when its left argument is a sequence of varying size between
1 and n — 1, while its right argument is always a singleton sequence. The final merge combines
(n — 1)-element with 1-element sequences, the second to last merge combines (n — 2)-element with
1-element sequences, so on so forth. Therefore, the total work for an input sequence S of length n is

n—1
W(reduceSort S) < Zc-(l—i—i) e 0(n?
i=1

since merge on sequences of lengths n; and n, has O(n; + n,) work.

Note that this reduction order is the order that the iter function uses, and hence is equivalent
to:

fun reduceSort’(S)=
iter merge_ (empty()) (map singleton S)

Furthermore, using this reduction order, the algorithm is effectively working from the front to the
rear, “inserting” each element into a sorted prefix where it is placed at the correct location to maintain
the sorted order. This corresponds to the well-known insertion sort.

Clearly, this reduction order has no parallelism except within each merge, and therefore the span
is

n—1
S(reduceSort x) < Zc-log(1+i) € O(nlogn)
i=1

since merge on sequences of lengths n; and n, has O(log(n; + n,)) span.

Notice that in the reduction order above, the reduction tree was extremely unbalanced. Would
the costs change if the merges are balanced? For ease of exposition, let’s suppose that the length of
our sequence is a power of 2, i.e., |x| = 2X. Now we lay on top the input sequence a “full” binary
tree” with 2X leaves and merge according to the tree structure. As an example, the merge sequence
for |x| = 22 is shown below.

X1 X2 X3 X4 X5 X6 X7 X8

g = merge

2This is simply a binary tree in which every node either has exactly 2 children or is a leaf, and all leaves are at the same
depth.

5 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 6 15-210 (Fall 2012)

Clearly using this balanced combining tree gives a smaller span than the imbalanced tree. But
does it also reduce the work cost? At the bottom level where the leaves are, there are n = |x| nodes
with constant cost each (these were generated using a map). Stepping up one level, there are n/2
nodes, each corresponding to a merge call, each costing c(1+ 1). In general, at level i (with i =0 at
the root), we have 2! nodes where each node is a merge with input two sequences of length n/2*1.
Therefore, the work of reduceSort using this reduction order is the familiar sum

logn n n

E i
W(reduceSort X) S 2'-¢C (F -+ F)
i=0

logn . n
-
i=0 2

This sum, as you have seen before, evaluates to O(nlogn). In fact, this algorithm is essentially the
merge sort algorithm. Therefore we see that mergeSort and insertionSort are just two special
cases of reduceSort that use different reduction orders.

As discussed earlier, we need to precisely define the reduction order to determine the result
of reduce when applied to a non-associative combining function. These two examples illustrate,
however, that even when the combining function is associative, the particular reduction order we
choose can lead to drastically different costs in both work and span. When combining function has
0(1) work, using a balanced reduction tree improves the span from O(n) to O(logn) but does not
change the work. But with merge_ as the combining function, we see that the balanced reduction
tree also improves the work from O(n?) to O(nlogn).

In general, how would we go about defining the cost of reduce with higher order functions.
Given a reduction tree, we’ll first define R(reduce f IS) as

R(reduce fIS) = {all function applications f(a, b) in the reduction tree}.
Following this definition, we can state the cost of reduce as follows:
W(reduce fIS) = On + >,  W(f(a,b)
f(a,b)eR(fLS)

(0] (logn max  S(f(a, b)))

S(reduce f IS
( F18) f(a,b)ER(f1S)

The work bound is simply the total work performed, which we obtain by summing across all combine
operations. The span bound is more interesting. The logn term expresses the fact that the tree is at
most O(logn) deep. Since each node in the tree has span at most max¢, »)S(f (a, b), any root-to-leaf
path, including the “critical path,” has at most O(log nmax, 5)S(f (a, b)) span.

This can be used, for example, to prove the following lemma:

Lemma 2.1. For any combine function f : a X a — a and a monotone size measure s: a — R, if for
any x, y,

1. s(f(x,y)) <s(x)+s(y) and
2. W(f(x,¥)) <cs (s(x)+s(y)) for some universal constant c; depending on the function f,

6 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 6 15-210 (Fall 2012)

then

W(reduce fIS)=0 (loglsl 2(1 +s(x))) :

X€S

Applying this lemma to the merge sort example, we have

W(reduce merge_ () ({(a):a€A))=0(|Allog|A])

7 Version 1.0



	Reduce Operation
	Divide and Conquer with Reduce

	Analyzing the Costs of Higher Order Functions
	Reduce: Cost Specifications


