
Recitation 10 — Balanced Trees
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

2 November 2011

Today’s Agenda:
- Announcements
- Operations on Trees
- Analysis of QUICKSORT, round 2

1 Announcements

• Exam 2 will be Thursday, 10 November at 7pm, in Doherty 2210.

• Exam 2 review will be Wednesday, 9 November at 7pm, in HH B103

• Questions about homework or class?

• Homework 7 is a practice exam and is out now. It’s due on 8 November at 23:59 EST. You may not use any
late days for this assignment because we’ll be going over parts of it in recitation and review on 9 November.

There are many more questions than there will be on the exam, and a lot of them are harder or more open
ended than we would ask on the exam, but they’re all relevant material. This time, we’re asking that you write
up solutions to all the questions on the practice and submit them as usual.

We don’t expect your submission for HW7 to have the same level of detail as you usually put into a homework
assignment. If we’re convinced that you spent some time understanding each problem and have produced the
key insights towards its solution, you’ll get full credit.

2 Operations on Trees

As in lecture, we’ll be talking about simple binary trees as values of type

datatype ’d BST = Leaf
| Node of (’d BST * ’d BST * key * ’d)

Since we need to know an ordering on the keys, the type key comes from an ordered structure that also provides
that ordering, so it doesn’t appear as a parameter in the type. The data stored at each node, however, can be of any
type, so BSTs are parametric in that type.

We use values of type ’d BST to represent totally ordered finite sets of pairs of type (key ∗′ d) by the following
mapping:

1. Leaf represents ∅

2. If T1 represents a set S1 and T2 represents a set S2, then Node(T1, (k, v), T2) represents the set S1 ∪ S2 ∪
{(k, v)}

The tree structure directly encodes the ordering of the set: a left child is less than its parent; a right child greater.
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2.1 Join

We mentioned join in class as the dual to split to form a basis for operations on BSTs, but we didn’t discuss its
implementation.

Recall the spec for join:

[join(L, m,R) : BST × (key × data) option× BST → BST]
This takes a left BST L, an optional middle key-data pair m, and a right BST R. It requires that all keys in L are
less than all keys in R. Furthermore if the optional middle element is supplied, then its key must be larger than any
n L and less than any in R. It creates a new BST which is the union of L, R and the optional m.

2.1.1 Implementation

fun join (T1 : ’d bst, m : (key * ’d) option, T2 : ’d bst) : ’d bst =
case m
of SOME (k,v) => Node(T1,T2, k, v)
| NONE =>

case T2
of Leaf => T1
| Node(L,R,k,v) => Node(join(T1, NONE,L), R, k, v)

• We inspect the optional value

– If it’s SOME(k,v), then we make it the value of the new root and terminate. This is correct because of
the spec we have on join is actually quite strong

– If it’s NONE, then we need to figure out how to make a new tree from the two trees without breaking the
BST invariants.

∗ If T2 contains no keys, we return T1
∗ Otherwise: the left sub-tree is the result of joining T1 and the left sub-tree of T2; the right sub-tree

is the right sub-tree of T2; and the key-value pair is the key-value pair of T2.
This preserves the BST invariants because we’ve promoted the right sub-tree of the right child.
That means that every element in the new right child is greater than everything in the left child by
assumption and the spec of join.

2.1.2 Cost

The analysis of this depends on the relative sizes of T1 and T2, which is a balance criterion, so we’ll analyize this
more carefully when we talk about specific balancing trees. split remains largely unchanged for the various trees,
but join changes more substantially.

Informally, we recurr down T1 and not T2, so the work and span should be proportional only to the depth of T1. If
it’s balanced, this will be logarithmic.

2.2 Union

If A and B are sets, their union is
A ∪B := {x : x ∈ A ∨ x ∈ B}

as in Figure 1. If we’re using trees to represent sets, recall that we can compute the intersection as follows:
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Figure 1: Union of Two Sets

fun union (T1 : ’d bst, T2 : ’d bst) : ’d bst =
case T1
of Leaf => T2
| Node(L1, R1, k1, v1) =>

let
val (L2, _, R2) = split (T2, k1)

in
join (union(L1, L2), SOME (k1,v1), union(R1,R2))

end

1. We inspect T1

(a) If it represents the empty set, we return T2 because X ∪ ∅ = X for any set X .

(b) If not, it must be Node(L1, R1, k1, v1).

i. We split T2 based on k1, computing two sets whose union is T1 without k1, by the spec of split.
Call them L2 and R2 respectively.

ii. By the spec of split, every key in L2 is less than k1 and every key in R2 is greater. By the BST
invariants, every key in L1 is less than k1 and every key in R1 is greater. Therefore, the union of
L1 and L2 and the union of R1 and R2 will also form a BST.

iii. We join the BSTs produced inductively from the unions with the key. We add this key uncondition-
ally, since union contains everything in both sets.

Analysis of cost of union is done very carefully in lecture 19 notes.

2.3 Intersection

If A and B are sets, their intersection is

A ∩B := {x : x ∈ A ∧ x ∈ B}

as in Figure 2. If we’re using trees to represent sets, we can compute the intersection as follows:

fun inter (T1 : ’d bst, T2 : ’d bst) : ’d bst =
case T1
of Leaf => Leaf
| Node(L1, R1, k1, v1) =>

let
val (L2, x, R2) = split (T2, k1)
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Figure 2: Intersection of Two Sets

val keep = case x
of NONE => NONE
| _ => SOME(k1,v1)

in
join (inter(L1, L2), keep, inter(R1,R2))

end

The codes proceeds by recursion on the left argument. It would be symmetric in the right argument, but either way
is as good as the other.

The argument of why this code is correct is basically identical to the argument for union except for the new
variable keep. Since an element is in the intersection of two sets if and only if it is in both sets, we can’t just add
the key-value pair immediately: instead, we only add it to the resultant set if it also appears in T2. By the spec if
split, if it appears in T2, then it must be returned as the middle element from split, so this is sufficient.

Because of how similar the code is, the analysis of the cost of intersection is practically identical to the analysis of
cost of union is in lecture 19 notes.

2.4 Set Difference

If A and B are sets, their difference is

A\B := {x : x ∈ A ∧ x 6∈ B}

as in Figure 3. If we’re using trees to represent sets, we can compute the difference as:

Figure 3: Difference of Two Sets
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fun diff (T1 : ’d bst, T2 : ’d bst) : ’d bst =
case T1
of Leaf => Leaf
| Node(L1, R1, k1, v1) =>

let
val (L2, x, R2) = split (T2, k1)
val keep = case x

of NONE => SOME(k1,v1)
| _ => NONE

in
join (diff(L1, L2), keep, diff(R1,R2))

end

Again, the argument of why this code is correct is basically identical to the argument for intersection except
for the use of keep. Since an element is in the difference of two sets if and only if it is in first and not the second,
we can’t just add the key-value pair immediately: instead, we only add it to the resultant set if it fails to appear in
T2. By the spec if split, if it appears in T2, then it must be returned as the middle element from split, so this
is sufficient.

Because of how similar the code is, the analysis of the cost of difference is practically identical to the analysis of
cost of union is in lecture 19 notes.

3 QUICKSORT Analysis

We argued in lecture yesterday that the expected runtime of randomized QUICKSORT is in O(n lg n). Tomorrow
we’ll argue that the likelihood that we’re very far away from that expected runtime is extremely small, so we’ll go
over the argument again somewhat slowly.

See lecture 19 for analysis.
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