Recitation 5 — More Graphs

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

September 28, 2011

Today's Agenda:

- Announcements
- Records in ML
- Random Walks
- Maze Generation
- SSSP
- HW2 handback

1 Announcements

- We have a survey for you to fill out about the course it's posted on the bboard. Please do it so we can make the course better for you!
- Assignment 4 is due tomorrow at 11:59pm. Same late day policy as last week: you have until Saturday at 11:59pm to hand in, at the cost of 2 late days.
- Assignment 5 will go out on Friday. It won't be due until after Midterm 1 on Oct 6—but there will be test-prep questions that you should attempt before the test.
- Questions about homework, class, life, universe?

2 Records in ML

Here's a useful programming technique that will prevent bugs in your code and help us read and grade it.

Records are tuples whose elements are named.

Instead of

```
type point = int * int
val start : point = (5,8)

we can write

type point = {x:int, y:int}
val start : point = {y = 8, x = 5} (* any order! *)
```

You even have similar pattern matching utilities.

```
fun (p:point) =
  let
   val {x=xcoord, y=ycoord} = p
  in
   ...
  end
```

Warning: Mind the distinction between variables and labels! x and y are not bound by the let statement; xcoord and ycoord are.

A useful trick with records is "punning": in the above example, we can abbreviate

```
fun (p:point) =
  let
    val {x, y} = p
  in
    ...
end
```

and now we can use x and y as variables in the let body. Note that these names must match the fields of p exactly.

3 Warmup: Random Walks Through Graphs

This should be a very simple programming exercise compared to what you're doing in homework 4, but let's do it just to get warmed up.

A random walk is a path through a graph decided randomly.

Input: a graph G, a starting vertex v and a path length l

Output: a path of length l following a random walk through G starting at v

We could use this to solve a simpler version of one of the problems you did on homework 3: Babble generation with a k of 1. (Q: why only a k=1? A: our random traversal has no "memory". It only knows where it is, not where it's been.)

Q: How would you represent the document as a graph?

A: A weighted, directed graph where vertices are words, edge (x, y) is "x precedes y". Need to tweak the code slightly to weight getRandom by edge weight.

XXX code to turn a document into such a graph?

4 Maze Generation

Problem: generate a random maze on a grid graph.

In a grid graph, nodes are cells and edges are walls. E.g.

We can generate a random maze by traversing this graph and randomly destroying walls.

BFS: (XXX is this really BFS?)

- Start anywhere
- Look at neighbors if any are unvisited, destroy the edges to them with some probability (density can be a parameter to the maze function)
- Add unvisited neighbors to the queue
- Recur

DFS:

- Start anywhere, add self to visited
- Choose unvisited neighbor randomly, remove the edge and add it to the queue
- Recur

TA note: don't write the code for this – it might go on the homework. I decided it was too large for recitation.

5 Single Source Shortest Path (SSSP) Problem

Problem: Single source shortest path (SSSP)

Instance: A graph G = (V, E) and a source vertex $v \in V$

Solution: For every vertex $u \in V$, the shortest path distance from v to u.

Why won't BFS work?

Simple counterexample:

5.1 Dijkstra's Algorithm

Guy wants to cover this formally in lecture tomorrow, so this will just be a sneak preview of the real thing.

At a high level (imperatively), we:

- maintain a current node, starting at source s, and a set of guessed distances for nodes we've seen, starting with (s,0)
- add the current node's guessed distance to a table
- guess all my neighbors' distances to be the current distance plus their edge weights
- choose my closest neighbor as the new current node; goto 2

Here's an example graph:

Supose unit weight edges. How would a DFS shortest path calculation from node a look?

We'll maintain a *current node* v, a *frontier* F with our "guesses" for unvisited node distances, and a distance table D that we'll return at the end.

Start with
$$F = \{(a,0)\}$$
 and $D = []$
Step 1: $v = a, D = [(a,0)], F = \{(b,1),(c,1),(e,1)\}$
Step 2: $v = b, D = [(a,0),(b,1)], F = \{(c,1),(e,1),(a,2),(c,2)\}$
Step 3: $v = c, D = [(a,0),(b,1),(c,1)],$
 $F = \{(e,1),a,c,(b,2),(a,2),(d,2),(e,2)\}$
Step 4: $v = e, D = [(a,0),(b,1),(c,1),(e,1)],$
 $F = \{(a,2),(c,2),(b,2),(a,2),(d,2),(e,2),(a,3),(c,3)\}$

Step 5 - 8:

v=a,c,b already in D with a lower cost;

$$F = \{(d, 2), (e, 2), (a, 3), (c, 3)\}$$

Step 6:

$$v = d, D = [(a, 0), (b, 1), (c, 1), (e, 1), (d, 2)],$$

 $F = \{(e, 2), (a, 3), (c, 3), (c, 3)\}$

Step 7 - 10:

Already in D with a lower cost

So we return the ${\cal D}$ above.