Recitation 5 - More Graphs

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

September 28, 2011

Today's Agenda:

- Announcements
- Records in ML
- Random Walks
- Maze Generation
- SSSP
- HW2 handback

1 Announcements

- We have a survey for you to fill out about the course - it's posted on the bboard. Please do it so we can make the course better for you!
- Assignment 4 is due tomorrow at $11: 59 \mathrm{pm}$. Same late day policy as last week: you have until Saturday at $11: 59 \mathrm{pm}$ to hand in, at the cost of 2 late days.
- Assignment 5 will go out on Friday. It won't be due until after Midterm 1 on Oct 6 -but there will be test-prep questions that you should attempt before the test.
- Questions about homework, class, life, universe?

2 Records in ML

Here's a useful programming technique that will prevent bugs in your code and help us read and grade it.
Records are tuples whose elements are named.
Instead of

```
type point = int * int
val start : point = (5,8)
```

we can write

```
type point = {x:int, y:int}
val start : point = {y = 8, x = 5} (* any order! *)
```

You even have similar pattern matching utilities.

```
fun (p:point) =
    let
        val {x=xcoord, y=ycoord} = p
    in
        ...
    end
```

Warning: Mind the distinction between variables and labels! x and y are not bound by the let statement; xcoord and ycoord are.

A useful trick with records is "punning": in the above example, we can abbreviate

```
fun (p:point) =
    let
        val {x, y} = p
    in
        ...
    end
```

and now we can use x and y as variables in the let body. Note that these names must match the fields of p exactly.

3 Warmup: Random Walks Through Graphs

This should be a very simple programming exercise compared to what you're doing in homework 4, but let's do it just to get warmed up.

A random walk is a path through a graph decided randomly.
Input: a graph G, a starting vertex v and a path length l
Output: a path of length l following a random walk through G starting at v

```
type path = vertex seq
fun randWalk i G =
    let
        fun randWalk' 0 G _ p = p
            | randWalk' i G v p =
                let
                    val next = getRandom (neighbors v)
                in
                    randWalk' (i-1) G next (hidel (Cons (v, p)))
                        end
    in
        randWalk' i G (anyVertex G) empty
    end
```

We could use this to solve a simpler version of one of the problems you did on homework 3: Babble generation with a k of 1 . (Q: why only a $k=1$? A: our random traversal has no "memory". It only knows where it is, not where it's been.)

Q: How would you represent the document as a graph?

A: A weighted, directed graph where vertices are words, edge (x, y) is "x precedes y ". Need to tweak the code slightly to weight getRandom by edge weight.

XXX code to turn a document into such a graph?

4 Maze Generation

Problem: generate a random maze on a grid graph.
In a grid graph, nodes are cells and edges are walls. E.g.

We can generate a random maze by traversing this graph and randomly destroying walls.
BFS: (XXX is this really BFS?)

- Start anywhere
- Look at neighbors - if any are unvisited, destroy the edges to them with some probability (density can be a parameter to the maze function)
- Add unvisited neighbors to the queue
- Recur

DFS:

- Start anywhere, add self to visited
- Choose unvisited neighbor randomly, remove the edge and add it to the queue
- Recur

TA note: don't write the code for this - it might go on the homework. I decided it was too large for recitation.

5 Single Source Shortest Path (SSSP) Problem

Problem: Single source shortest path (SSSP)
Instance: A graph $G=(V, E)$ and a source vertex $v \in V$
Solution: For every vertex $u \in V$, the shortest path distance from v to u.
Why won't BFS work?
Simple counterexample:

1

5.1 Dijkstra's Algorithm

Guy wants to cover this formally in lecture tomorrow, so this will just be a sneak preview of the real thing.
At a high level (imperatively), we:

- maintain a current node, starting at source s, and a set of guessed distances for nodes we've seen, starting with $(s, 0)$
- add the current node's guessed distance to a table
- guess all my neighbors' distances to be the current distance plus their edge weights
- choose my closest neighbor as the new current node; goto 2

Here's an example graph:

Supose unit weight edges. How would a DFS shortest path calculation from node a look?
We'll maintain a current node v, a frontier F with our "guesses" for unvisited node distances, and a distance table D that we'll return at the end.

Start with $F=\{(a, 0)\}$ and $D=[]$
Step 1:
$v=a, D=[(a, 0)], F=\{(b, 1),(c, 1),(e, 1)\}$
Step 2:
$v=b, D=[(a, 0),(b, 1)], F=\{(c, 1),(e, 1),(a, 2),(c, 2)\}$
Step 3:
$v=c, D=[(a, 0),(b, 1),(c, 1)]$,
$F=\{(e, 1), a, c,(b, 2),(a, 2),(d, 2),(e, 2)\}$
Step 4:
$v=e, D=[(a, 0),(b, 1),(c, 1),(e, 1)]$,
$F=\{(a, 2),(c, 2),(b, 2),(a, 2),(d, 2),(e, 2),(a, 3),(c, 3)\}$

Step 5-8:
$v=a, c, b$ already in D with a lower cost;
$F=\{(d, 2),(e, 2),(a, 3),(c, 3)\}$
Step 6:
$v=d, D=[(a, 0),(b, 1),(c, 1),(e, 1),(d, 2)]$,
$F=\{(e, 2),(a, 3),(c, 3),(c, 3)\}$
Step 7-10:
Already in D with a lower cost
So we return the D above.

