
Recitation 5 — More Graphs
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

September 28, 2011

Today’s Agenda:
- Announcements
- Records in ML
- Random Walks
- Maze Generation
- SSSP
- HW2 handback

1 Announcements

• We have a survey for you to fill out about the course – it’s posted on the bboard. Please do it so we can make
the course better for you!

• Assignment 4 is due tomorrow at 11:59pm. Same late day policy as last week: you have until Saturday at
11:59pm to hand in, at the cost of 2 late days.

• Assignment 5 will go out on Friday. It won’t be due until after Midterm 1 on Oct 6—but there will be test-prep
questions that you should attempt before the test.

• Questions about homework, class, life, universe?

2 Records in ML

Here’s a useful programming technique that will prevent bugs in your code and help us read and grade it.

Records are tuples whose elements are named.

Instead of

type point = int * int
val start : point = (5,8)

we can write

type point = {x:int, y:int}
val start : point = {y = 8, x = 5} (* any order! *)

You even have similar pattern matching utilities.

Parallel and Sequential Data Structures and Algorithms — Recitation 5 15-210 (Fall 2011)

fun (p:point) =
let

val {x=xcoord, y=ycoord} = p
in

...
end

Warning: Mind the distinction between variables and labels! x and y are not bound by the let statement; xcoord
and ycoord are.

A useful trick with records is “punning”: in the above example, we can abbreviate

fun (p:point) =
let

val {x, y} = p
in

...
end

and now we can use x and y as variables in the let body. Note that these names must match the fields of p exactly.

3 Warmup: Random Walks Through Graphs

This should be a very simple programming exercise compared to what you’re doing in homework 4, but let’s do it
just to get warmed up.

A random walk is a path through a graph decided randomly.

Input: a graph G, a starting vertex v and a path length l

Output: a path of length l following a random walk through G starting at v

type path = vertex seq
fun randWalk i G =

let
fun randWalk’ 0 G _ p = p

| randWalk’ i G v p =
let

val next = getRandom (neighbors v)
in

randWalk’ (i-1) G next (hidel (Cons (v, p)))
end

in
randWalk’ i G (anyVertex G) empty

end

We could use this to solve a simpler version of one of the problems you did on homework 3: Babble generation with
a k of 1. (Q: why only a k = 1? A: our random traversal has no “memory”. It only knows where it is, not where it’s
been.)

Q: How would you represent the document as a graph?

2

Parallel and Sequential Data Structures and Algorithms — Recitation 5 15-210 (Fall 2011)

A: A weighted, directed graph where vertices are words, edge (x, y) is “x precedes y”. Need to tweak the code
slightly to weight getRandom by edge weight.

XXX code to turn a document into such a graph?

4 Maze Generation

Problem: generate a random maze on a grid graph.

In a grid graph, nodes are cells and edges are walls. E.g.

o----o----o----o
| | | |
o----o----o----o
| | | |
o----o----o----o

We can generate a random maze by traversing this graph and randomly destroying walls.

BFS: (XXX is this really BFS?)

• Start anywhere

• Look at neighbors – if any are unvisited, destroy the edges to them with some probability (density can be a
parameter to the maze function)

• Add unvisited neighbors to the queue

• Recur

DFS:

• Start anywhere, add self to visited

• Choose unvisited neighbor randomly, remove the edge and add it to the queue

• Recur

TA note: don’t write the code for this – it might go on the homework. I decided it was too large for recitation.

5 Single Source Shortest Path (SSSP) Problem

Problem: Single source shortest path (SSSP)
Instance: A graph G = (V,E) and a source vertex v ∈ V
Solution: For every vertex u ∈ V , the shortest path distance from v to u.

Why won’t BFS work?

Simple counterexample:

3

Parallel and Sequential Data Structures and Algorithms — Recitation 5 15-210 (Fall 2011)

a
|\

1 | \ 10
| \
v v
b--->c

1

5.1 Dijkstra’s Algorithm

Guy wants to cover this formally in lecture tomorrow, so this will just be a sneak preview of the real thing.

At a high level (imperatively), we:

• maintain a current node, starting at source s, and a set of guessed distances for nodes we’ve seen, starting
with (s, 0)

• add the current node’s guessed distance to a table

• guess all my neighbors’ distances to be the current distance plus their edge weights

• choose my closest neighbor as the new current node; goto 2

Here’s an example graph:

b
o
/ \

/ \ c
a o-----o---o d

\ /
\ /
o
e

Supose unit weight edges. How would a DFS shortest path calculation from node a look?

We’ll maintain a current node v, a frontier F with our “guesses” for unvisited node distances, and a distance table
D that we’ll return at the end.

Start with F = {(a, 0)} and D = []

Step 1:
v = a, D = [(a, 0)], F = {(b, 1), (c, 1), (e, 1)}

Step 2:
v = b, D = [(a, 0), (b, 1)], F = {(c, 1), (e, 1), (a, 2), (c, 2)}

Step 3:
v = c, D = [(a, 0), (b, 1), (c, 1)],
F = {(e, 1), a, c, (b, 2), (a, 2), (d, 2), (e, 2)}

Step 4:
v = e, D = [(a, 0), (b, 1), (c, 1), (e, 1)],
F = {(a, 2), (c, 2), (b, 2), (a, 2), (d, 2), (e, 2), (a, 3), (c, 3)}

4

Parallel and Sequential Data Structures and Algorithms — Recitation 5 15-210 (Fall 2011)

Step 5 - 8:
v = a, c, b already in D with a lower cost;
F = {(d, 2), (e, 2), (a, 3), (c, 3)}

Step 6:
v = d, D = [(a, 0), (b, 1), (c, 1), (e, 1), (d, 2)],
F = {(e, 2), (a, 3), (c, 3), (c, 3)}

Step 7 - 10:
Already in D with a lower cost

So we return the D above.

5

	Announcements
	Records in ML
	Warmup: Random Walks Through Graphs
	Maze Generation
	Single Source Shortest Path (SSSP) Problem
	Dijkstra's Algorithm

