
Recitation 3 — HW1 Debrief

Parallel and Sequenctial Data Structures and Algorithms, 15-210 (Fall 2011)

14th September 2011

1 Announcements

• HW3 will come out today. It will be due on 22 September, which is a Thursday.

• Questions from lecture, homework, etc.?

• Today we’ll solve the harder recurrence and go through a careful presentation of the proof.

2 Recurrence in HW1

In assignment one, we had the following recurrence:

W (n) = 2W (n/2) + O(lg n) + O(1)

This turned out to be hard, and you should not be shamed if you did not get it. The another recurrence was much
easier, and I almost everyone got the correct answerO(n lg n). It had the familiar structure of merge sort, for
example.

Most typicalincorrect answer for the above recurrence wasW (n) ∈ O(lg2 n). Let’s first see why that does not
work, using the induction (substitution) method.

2.1 Showing W (n) /∈ O(lg2 n)

We start with the induction hypothesis (IH) thatW (n) ∈ O(lg2 n). This is equal to saying that there existsc such
thatW (n) ≤ c lg2 n whenn is above some minimum value.

That is, we assume thatW (n/2) ≤ c lg2 n and then substitute this to the recurrence onW (n). We also replace the
O(..) from the recurrence with corresponding definition anduse constantsk1 andk2 for them:

W (n) ≤2W (n/2) + k1 lg n + k2

≤2c lg2(n/2) + k1 lg n + k2

=2c(lg n − lg 2)2 + k1 lg n + k2

Now lg = log2 solg 2 = 1:

=2c(lg n − 1)2 + k1 lg n + k2

=2c(lg2 n − 2 lg n + 1) + k1 lg n + k2

=2c lg2 n + (lower degree terms)



Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Fall 2011)

lg nlg n

2 lg
(

n
2

)

lg n
2

lg n
2

4 lg
(

n
4

)

lg n
4

lg n
4

lg n
4

lg n
4

n lg 11 1 1 1 . . . 1 1 1 1

...
...

Figure 1: tree method example

Although it may look like we showedW (n) ∈ O(log2n), we have not.W (n) ≤ 2c lg2 n + (lower degree terms)
does not implyW (n) ≤ c lg2 n for any choice ofc. It is crucial that the proof is of the formW (n) ≤ 2W (n/2) +
k1 lg n + k2 ≤ ... ≤ c lg2 n to prove the inductive hypothesis. In this case, we showed that the work grows twice
as fast as we expected, and our proof failed.

It turns out the correct answer isO(n). But usingW (n) ≤ cn as induction hypothesis will not work either - we are
left with annoying terms that depend onn. But just because that form of the function failed to prove the hypothesis,
does not in itself mean the hypothesis is wrong. For the induction method to work, one must then use a stronger
hypothesis. However, it requires some trial and error to come with a good guess.

In this case, it is therefore good to use thetree method at least to get a grip on what is the correct complexity.

2.2 Using tree method

W (n) = 2W (n/2) + O(lg n) + O(1)

The tree method will involve a nasty sum. To make things easier, and without loss of generality, let’s assumen is
a power of 2, i.en = 2k for some integerk.

Tree itself is easy to draw: at each level we branch each node to two and halve the size of the problem. For each
level, we write what work is done on that level. The recursivepart is taken into account when we sum all levels
together.

• How many levels does the tree have? (lg n)

• How many leaves are in the tree? (n, which is a good hint thatW (n) /∈ O(lg2 n))

• Do you see the general form of the work on each level?(2i(a lg n
2i + b))

2



Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Fall 2011)

When we sum all the levels together, we come up with followingsum:

S =

lg n
∑

i=0

2ia lg
n

2i
+

lg n
∑

i=0

2ib

=a

lg n
∑

i=0

2i lg
n

2i
+ b

lg n
∑

i=0

2i

=aS1 + bS2

• What does theS2 evaluate to? This is familiar from binary arithmetic. (2n− 1)

So let’s look at the first sum. With some simple rules of logs (log ax = x log a, log a
b

= log a − log b)

S1 =

lg n
∑

i=0

2i lg
n

2i

=

lg n
∑

i=0

2i(lg n − lg 2i)

=

lg n
∑

i=0

2i(lg n − i)

=

(

lg n
∑

i=0

2i lg n −

lg n
∑

i=0

2ii

)

For the first sum, we have the same case as previously, and we get

S1 =(2n − 1) lg n −

lg n
∑

i=0

2ii

The second sum is the tricky one. But usingtelescopic sums, we can solve it. Telescopic sums are, by the way,
quite common in recurrences and one needs some experience todetect them. For example, look how the formula
for geometric sums is derived—it is telescoping.

So here is the trick:

s =

k
∑

i=0

2ii

2s =

k
∑

i=0

2i+1i

s = 2s − s =

k
∑

i=0

2i+1i −

k
∑

i=0

2ii

=k2k+1 + (k − 1)2k − k2k + (k − 2)2k−1 − (k − 1)2k−1 . . . − 2

3



Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Fall 2011)

Here we ordered the sum elements by their exponent. Now you can see, if you look at the pairs with same exponent
of form (k − j)2k−j+1 − (k − j)2k−j , that this is:

(k − j − 1)2k−j − (k − j)2k−j = −2k−j

So we can simplify the sum to:

s =k2k+1 −

k
∑

i=1

2i

And ask = lg n:

s =2n lg n − (2n − 2)

Back to our original sum, using the result above:

S =aS1 + bS2

=a[(2n − 1) lg n − (2n lg n − (2n − 2)] + b(2n− 1)

= − a lg n + (a + b)(2n − 1) − a

And this is clearly∈ O(n)!

2.2.1 Sidenote

So isO(lg2 n) more or less work thanO(n)? It is easy to test with some numbers:

n lg n lg2 n
2 1 1
4 2 4
8 3 9
16 4 16
32 5 25
64 6 36

With very small numbers, the order changes, but when n¿=32, linear is more work thanlg2 n.

It is useful also to compare the derivatives

d

dn
log2 n =

2 logn

n
<

d

dn
n = 1

whenn is large enough.

3 Proof About Code

3.1 General Thoughts

Proving the correctness of code and writing code are dependent processes. The structure of each informs the other,
and you can reveal bugs in one through the other.

As you prove more and more about code, you should be able to look at a piece of code and very quickly envision
the structure of proofs that you would want to prove it correct. If you can’t, there’s a good chance that your code

4



Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Fall 2011)

isn’t structured well. The structural induction principlefor abstract sequences provided in HW2 hopefully helped
you to do this.

To help you get practice with this, we’ll be requiring that you annotate all the functions you write with a specifi-
cation. You should think of this specification as a statementof the theorem of correctness that you would prove if
you had to prove that function correct.

The documentation PDF should give you a feel for this level ofspecification. As you either noticed or should
notice, the statements of the specs in that PDF are formal enough that you can use them in your proofs as well as
in understanding the behaviour of the function.

3.2 Example

We’ll now go through an example of a proof of one of the reference implementations of the stock market problem,
emphasizing the identical structure.

3.2.1 Code

functor StocksDivAndConq (Seq : SEQUENCE) : STOCKS =
struct

structure Seq = Seq
open Seq
open OC

val max = Int.max
val min = Int.min

fun stock s =
let

fun stock’ s =
case showt s
of EMPTY => raise Fail "invariant violated"
| ELT(x) => (x, x, 0)
| NODE(l,r) =>

let
val ((minl, maxl, jl),(minr, maxr, jr)) = (stock’ l, stock’ r)

in
(min(minl, minr),
max(maxl, maxr),
max(jl, max (jr, maxr-minl)))

end
in

case length s
of 0 => NONE
| _ =>

let
val (_,_, ans) = stock’ s

in
SOME ans

end
end

end

5



Parallel and Sequential Data Structures and Algorithms — Recitation 3 15-210 (Fall 2011)

3.2.2 Structure of Proof

We will prove the correctness of the implementation inStocksDivAndConq in stocks.sml. The other
implementations are correct, and may have some stylistic advantages, but their proofs of correctness are choked
with a lot of lemmas about option types.

Since this implementation has an inner helper function, we will prove two theorems. Since the inner function is
recursive and the outer function isn’t, one proof will be by induction and the other won’t. Since the inner helper
function raises an exception on argument sequences with length zero, our theorem about the inner function will be
stated to exclude such sequences.

In the proof about the inner helper function, we’ll never consider the extremal values of the empty set, so we’ll
represent them with integers. In the proof about the outer function, we will useNONE to represent either extremal
value of an empty set and eitherSOME(x) to represent either extremal value of a non-empty set extreme isx.

3.2.3 Proof

Theorem: For all integer sequencess, if |s| > 1 andstock′s =⇒ v for some valuev of typeint ∗ int∗ int then

v = (min {si|0 ≤ i < |s|} , max {si|0 ≤ i < |s|} , max {sj − si|0 ≤ i ≤ j < |s|})

Theorem: For all integer sequencess, if stocks =⇒ v for some valuev of typeint option then

v = max {sj − si|0 ≤ i ≤ j < |s|}

See HW01 solution for the actual proofs.

3.2.4 What Isn’t There

You’ll notice that there are a few things that we didn’t include in the above proof.

• When we called to one of the library functions, we applied itsspec as we needed to and kept moving. In
general, we only refer to the relevant parts of the spec, evenif it’s substantially more complicated.

• We didn’t prove termination. We were interested in correctness, and mostly implicitly assumed termination.

6


	Announcements
	Recurrence in HW1
	Showing W(n) -.25ex-.25ex-.25ex-.25exO(lg2 n) 
	Using tree method
	Sidenote


	Proof About Code
	General Thoughts
	Example
	Code
	Structure of Proof
	Proof
	What Isn't There



