Recitation 3 — HW1 Debrief
Parallel and Sequenctial Data Structures and Algorith®<10 (Fall 2011)

14th September 2011

1 Announcements

e HW3 will come out today. It will be due on 22 September, whiskaiThursday.
e Questions from lecture, homework, etc.?

e Today we’ll solve the harder recurrence and go through d@greesentation of the proof.

2 Recurrencein HW1

In assignment one, we had the following recurrence:

W(n) = 2W(n/2) + O(lgn) + O(1)

This turned out to be hard, and you should not be shamed if icboat get it. The another recurrence was much
easier, and | almost everyone got the correct ansWerlgn). It had the familiar structure of merge sort, for
example.

Most typicalincorrectanswer for the above recurrence Wa§n) € O(lg?n). Let's first see why that does not
work, using the induction (substitution) method.

2.1 Showing W (n) ¢ O(lg*n)
We start with the induction hypothesis (IH) tHat(n) € O(Ig” n). This is equal to saying that there existsuch
thatW (n) < ¢lg® n whenn is above some minimum value.

That is, we assume th#lt (n/2) < clg? n and then substitute this to the recurrencdiofn). We also replace the
O(..) from the recurrence with corresponding definition ard constants;, andk, for them:
W(n) <2W(n/2) + k1lgn + ks
<2c1g®(n/2) + kilgn + ko
=2c(lgn —1g2)* + ki lgn + ko

Now lg = log, solg2 = 1:
=2c(lgn —1)* + kylgn + ko

=2¢(lg?n — 21gn + 1) + k1 1gn + ks
=2¢lg? n + (lower degree terms)

Parallel and Sequential Data Structures and Algorithms —ifaéon 3 15-210 (Fall 2011)

@

@ @ 21g (%)
() () (3 (=) e

I3
~—

00000000

Figure 1: tree method example

Although it may look like we showed’ (n) € O(log®n), we have notlV (n) < 2clg?n + (lower degree terms)
does not implyiW (n) < ¢lg? n for any choice of:. Itis crucial that the proof is of the ford¥/ (n) < 2W (n/2) +
kilgn + ko < ... < clg® n to prove the inductive hypothesis. In this case, we showatittte work grows twice
as fast as we expected, and our proof failed.

It turns out the correct answerd(n). But usingiV(n) < ¢n as induction hypothesis will not work either - we are
left with annoying terms that depend anBut just because that form of the function failed to proweltlgpothesis,
does not in itself mean the hypothesis is wrong. For the itidnenethod to work, one must then use a stronger
hypothesis. However, it requires some trial and error toewrith a good guess.

In this case, it is therefore good to use thee method at least to get a grip on what is the correct complexity.

2.2 Usingtree method
W(n) =2W(n/2)+ O(lgn) + O(1)
The tree method will involve a nasty sum. To make things eaaiel without loss of generality, let's assumés

a power of 2, i.en = 2* for some integet.
Tree itself is easy to draw: at each level we branch each rotiedt and halve the size of the problem. For each
level, we write what work is done on that level. The recurgiget is taken into account when we sum all levels
together.

e How many levels does the tree havé®n()

e How many leaves are in the tree?, (vhich is a good hint that/’ (n) ¢ O(lg*n))

e Do you see the general form of the work on each levei?alg 2 + b))

Parallel and Sequential Data Structures and Algorithms —ifaéon 3 15-210 (Fall 2011)

When we sum all the levels together, we come up with follovanm:

lgn lIgn
i n i
5:22 alg 5 +Zz b
1=0 1=0
Ign n Ign
:aZTlg? +bZ2Z
1=0 1=0
=aS7 + bSs

e What does th&; evaluate to? This is familiar from binary arithmetien(— 1)

So let’s look at the first sum. With some simple rules of ldgg ¢* = z log a,log § = loga — logb)

Ign

; n

Sl = Z 2" 1g 5
=0

Ign

= Z 2i(1gn —1g2%)
i=0

Ign

= Z 2i(1gn — 1)
i=0
lIgn lgn
= (Z 2'lgn— Y 22)
=0 =0
For the first sum, we have the same case as previously, andtwe ge

Ign

S1=2n—-1)lgn — 22%’

=0

The second sum is the tricky one. But ustetpscopic sums, we can solve it. Telescopic sums are, by the way,
quite common in recurrences and one needs some experiedetetts them. For example, look how the formula
for geometric sums is derived—it is telescoping.

So here is the trick:

25 = Z 2it1;

=0

k k
s=2s—s 222”12'—22%
i=0 i=0

=k2FF (k- 1)2F — k2% - (k—2)2" ! — (R —1)2"1 ...~ 2

Parallel and Sequential Data Structures and Algorithms —ifaéon 3 15-210 (Fall 2011)

Here we ordered the sum elements by their exponent. Now yosas if you look at the pairs with same exponent
of form (k — 7)2F=7+! — (k — 4)2F7, that this is:

(k= = 1)2679 = (= j)24~9 = —24~3

So we can simplify the sum to:

k
s =k2M =) "o
i=1

And ask = Ign:
s =2nlgn — (2n — 2)
Back to our original sum, using the result above:

S =aS; + bSs
=a[(2n — 1)1gn — (2nlgn — (2n — 2)] + b(2n — 1)
=—algn+(a+b(2n—-1)—a

And this is clearlye O(n)!

2.2.1 Sidenote

SoisO(lg? n) more or less work tha®(n)? Itis easy to test with some numbers:

n |lgn|lg°n
2 1 1
4 2 4
8 3 9
16| 4 16
32| 5 25
64| 6 36

With very small numbers, the order changes, but when n¢ #&&rlis more work thaig? n.
It is useful also to compare the derivatives

d 2 2logn a
%bg n = - <dnn_1

whenn is large enough.

3 Proof About Code

3.1 General Thoughts

Proving the correctness of code and writing code are depgpdecesses. The structure of each informs the other,
and you can reveal bugs in one through the other.

As you prove more and more about code, you should be able kaalios piece of code and very quickly envision
the structure of proofs that you would want to prove it catréfcyou can't, there’s a good chance that your code

Parallel and Sequential Data Structures and Algorithms —ifaéon 3 15-210 (Fall 2011)

isn’'t structured well. The structural induction principte abstract sequences provided in HW2 hopefully helped
you to do this.

To help you get practice with this, we’ll be requiring thatuyannotate all the functions you write with a specifi-
cation. You should think of this specification as a statenoéttie theorem of correctness that you would prove if
you had to prove that function correct.

The documentation PDF should give you a feel for this levespcification. As you either noticed or should
notice, the statements of the specs in that PDF are formalgimitat you can use them in your proofs as well as
in understanding the behaviour of the function.

3.2 Example

We'll now go through an example of a proof of one of the refeesimplementations of the stock market problem,
emphasizing the identical structure.

3.21 Code

functor StocksDi vAndCong (Seq : SEQUENCE) : STOCKS =

struct
structure Seq = Seq
open Seq
open COC
val max = Int.nmax
val min =Int.mn

fun stock s =
| et
fun stock’ s =
case show s

of EMPTY => raise Fail "invariant violated"
| ELT(x) => (x, x, 0)
| NODE(I,r) =>
| et
val ((mnl, maxl, jl),(mnr, maxr, jr)) = (stock’ |, stock’ r)
in

(mn(mnl, mnr),
max(max!| , maxr),
max(jl, max (jr, maxr-mnl)))
end
in
case length s
of 0 => NONE
| _ =>
| et
val (_, , ans) = stock’ s
in
SOME ans
end
end
end

Parallel and Sequential Data Structures and Algorithms —ifaéon 3 15-210 (Fall 2011)

3.2.2 Structure of Proof

We will prove the correctness of the implementationSinocksDi vAndConq in st ocks. sm . The other
implementations are correct, and may have some stylistiargdges, but their proofs of correctness are choked
with a lot of lemmas about option types.

Since this implementation has an inner helper function, Wepnove two theorems. Since the inner function is

recursive and the outer function isn’t, one proof will be hgiction and the other won’t. Since the inner helper
function raises an exception on argument sequences wigtheero, our theorem about the inner function will be
stated to exclude such sequences.

In the proof about the inner helper function, we’ll never sidier the extremal values of the empty set, so we’'ll
represent them with integers. In the proof about the outeetfan, we will useNONE to represent either extremal
value of an empty set and eith8OVE(X) to represent either extremal value of a non-empty set extiem

3.2.3 Proof

Theorem: For all integer sequences |s| > 1 andstock’s = v for some value of typeint int * int then
v = (min {s;]0 < i < |s|},max {s;]0 <i < |s|},max{s; — s;]0 <i < j <s|})

Theorem: For all integer sequence$f stocks = v for some value of typeint option then

v =max {s; — 5|0 <3 < j <|s[}

See HWO01 solution for the actual proofs.

3.24 What lsn't There

You'll notice that there are a few things that we didn't indéuin the above proof.

e When we called to one of the library functions, we appliedsjiec as we needed to and kept moving. In
general, we only refer to the relevant parts of the spec, évesisubstantially more complicated.

e \We didn’t prove termination. We were interested in corress) and mostly implicitly assumed termination.

	Announcements
	Recurrence in HW1
	Showing W(n) -.25ex-.25ex-.25ex-.25exO(lg2 n)
	Using tree method
	Sidenote

	Proof About Code
	General Thoughts
	Example
	Code
	Structure of Proof
	Proof
	What Isn't There

