Recitation 2 — Scan
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

7th September 2011

1 Announcements

e HWI1 was due last night. If you’re going to use a late day, please email us! Otherwise, we will grade whatever
was in your hand in directory at midnight last night. This will not be the usual policy when homeworks are
due on Mondays, but we want to grade today.

e HW2 is out. It’s due at 23:59 EST on Monday 12th September, with late days as stated in the policy.

e Questions from lecture, homework, or life?

2 Scan

We mentioned the existence of a function scan quickly in lecture yesterday. We’ll spend most of today describing
exactly what scan is and showing off some unexpected applications of it.

scan takes a function as one of its arguments. The all of the text below makes the assumption that this function is
associative. Recall the mathematical definition that a function f is said to be associative if and only if

VavbVe. f(f(a,b),c) = f(a, f(b,c))

We also make the assumption that the initial value is a right-identity of the functional argument. Recall the
mathematical definition that [is a right-identity of f if and only if

Va.f(a,I) =a

. We don’t need these assumptions in general, and we’ll come back to a version of scan later that doesn’t have
them, but it’s a cleaner way to start thinking about scan with these properties.

2.1 Definition

scan has type
scan: (a*a — a) > o — a seq — (a seq x a)

Informally, scan computes both the reduction of the sequence using the supplied operator and the sequence of all
the partial results that were computed along the way.

More formally, let f be an associative function, I a right-identity of f, and s a sequence value. If we use @ as infix
notation for f, (scan £ I s) evaluates to

(<I,so,so@51,...7so@...@s|5‘,2>,50@...EBS‘S|,1)

or

0 1 2 |s]—2 |s]—1
I,@Si,@Si,@Si, 7@Si a@si
=0

=0 =0 =0 =0

Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2011)

Note that these statements are not ambiguous only because f is associative. Since it is, all of the possible
parenthesizations of the terms above compute the same thing, so the parentheses are not needed.

The terms in the sequence in the left component and the entire right component should look like applications of
reduce with associative operation and an identity. Specifically, if f is associative and [is a right-identity of f,
(scan f b) islogically equivalent to

fn s =>
(tabulate (fn i1 => reduce £ I (take(s,1))) (length s),
reduce £ I s)

It’s worth noting that each of the calls to reduce applies f with I as the right argument exactly once, so this
actually computes the pair

((Lso®I,(so®s1)BI,....(s0®...B55—2)BI), (50D ... B s)5-1) B 1)

If I wasn’t the right-identity of f, the equivalence wouldn’t hold.

With the assumption that f is associative, it’s also the case that (scan £ b) islogically equivalentto (iterh
f D) inthe same way that (reduce f Db) islogically equivalentto (iter f b).iter and iterh happen
choose a very sequential association of the expressions in question, but again this doesn’t matter. The associations
only differ in that they have different implications for the cost of computing them, not what’s computed.

Specifically, if £ is a function that takes no more than a constant number of steps on all input, (iterh f) and
(iter £) have both work and span in O(n), where as reduce and scan both have work in O(n) and span in
O(lgn).

It’s worth noting that while reduce and scan are highly parallel, unlike iter and iterh, they pay the price by
having slightly less general types.

2.2 Note on Terminology

If f is a function and [is a relevant identity for f, we’ll often say “f-scan” to mean
fn s => scan £ I

For example, a “+-scan” is

fn s => scan (opt) O

2.3 Example Uses of Scan

At first glance, scan seems not to offer much that isn’t already available through reduce. With clever choices of
associative functions, though, scan can be used to compute some surprising things efficiently in parallel.

231 +-scan
We saw a simple use of scan in lecture to compute all the prefix sums of a sequence:

fun prefixsum s = scan (opt) 0 s

Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2011)

For example, for the sequence (5,2, 3,2, —1), pref ixsum computes the pair

((0,5,7,10,12) , 11)

2.3.2 Matching Parentheses

We can use scan to solve the parenthesis matching problem that we went over last week. The idea is that we first
map each open parenthesis to 1 and each close parenthesis to —1. We then do a +-scan on this integer sequence.
The elements in the sequence returned by scan exactly correspond how many unmatched parenthesis there are in
that prefix of the string.

For example:
<(7)’ (7 (7)’)7)>

becomes
<17 71a 17 17 717 717 71>

and then
(0,1,0,1,2,1,0,—1)

and then fails, because the counter went negative at some point indicating an imbalance.

functor ParensScan (S : SEQUENCE) : PARENS =
struct

structure Seq = S

structure SeqUtil = Util (Seq)

open Seq
open SeqUtil

fun match s =
let
fun paren2int OPAREN = 1
| paren2int CPAREN "1

val C = map paren2int (preproc s)
val (S,total) = scan (op+) 0 C
val SOME (maxint) = Int.maxInt
in
(reduce Int.min maxint S) >= 0 andalso total = 0
end
end

2.3.3 Stock Market Problem

We can also use scan to solve the Stock Market problem from this week’s homework. This is somewhat more
complicated than matching parentheses, so the code is slightly more involved. Here’s the idea:

e We do a min-scan. The each element in the resultant sequence is the minimum of the corresponding prefix
of prices.

Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2011)

e We use map?2 to map subtraction down the zip of this resultant sequence and the original sequence of prices.
Each element of this new sequence is the jump in price that would be obtained by buying at the minimum and
selling at that time.

e We maximize over this sequence of jumps to get the correct answer.
functor StocksScan (Seqg : SEQUENCE) : STOCKS =
struct

structure Seq = Seq
open Seq

fun stock s =

let

val SOME (maxint) = Int.maxInt

val (p,_) = scan Int.min maxint s
in

case length s
of 0 => NONE
| _ => SOME (reduce Int.max 0Oe (map2 (op-) s p))
end
end
structure ScanTest = StocksTest (StocksScan (ArraySequence))

2.3.4 Computing Fibbonacci Numbers

With a carefully chosen matrix, we can use scan to compute the Fibonnaci numbers. In the extremely unlikely
event that you’ve forgotten, the Fibbonacci numbers are defined as follows:

Definition: The Fibbonacci numbers are an integer sequence given by the following recurrenc

OF_1:1
OF():O
.Flzl

o Fy=F, 1+F, »

We make the following claim about this definition, which we will prove by induction:

Claim:

For all natural numbers n,

Proof: We’ll prove this by induction on n.
Base Case: n =0

't is slightly contrived, but harmless, to define the —15% element of the Fibbonacci sequence. The other base cases are such that the recursive
case will never use it, so this could be any constant and produce the same sequence of integers. This one happens to make the proof work, though.

Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2011)

Any n X n matrix to the zero power is the n X n identity matrix, so

1 1\° (1 0\ (R F
1 0/ \0 1) \Fy, F,
which is exactly as desired.

Inductive Case:

Assume that

1 1\" (F.a F,
1 0 - Fn Fn—l
n+1
1 N\"" _ (Fuo Fun
1 0 o Fn+1 Fn

Fn+1 Fn . 11 _ Fn+2 Fn+1
Fn Fn_1 1 0/ Fn+1 Fn

Recall matrix multiplication, specifically in the case of taking the product of two 2 x 2 matrices:
a b\ (e [\ _ (ae+bg af+0bh
c d g h) \cet+dg cf+dh

Fn+1+Fn Fn+1
Fn+Fn—1 Fn

Fn+2 Fn+1
Fn+1 Fn

Fn+2 Fn+1
FnJrl Fn

We want to show that

It suffices to show that

Therefore,

/\’TJ
3
Sk
£

3

P
—

N————
7 N\
— =
O =
N————
Il

This is exactly as desired and concludes the proof.

Remember that matrix multiplication is an associative operation on square matrices. We’ll only need 2 x 2 int
matrices, so for simplicity let’s represent them as values of type int * int * int * int.

The above proof means that we can compute the Fibbonacci numbers by applying scan to a matrix multiplication
function:

functor FibboScan (S : SEQUENCE) : FIBBO =
struct

structure Seq = S

open Seq

(» very simple representation of 2x2 matrices x)
fun mmult ((a,b,c,d), (e, f,9,h)) = (axe + bxg, cxe + dxg,
axf + b*xh, cxf + dxh)

Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2011)

(» returns the first n fibbonacci numbers x)

fun fib n =

let
val s = tabulate (fn _ => (1,1,1,0)) (n+1)
val (ans,_) = scan mmult (1,0,0,1) s

in
map (fn (_,_,_,x) => x) (drop(ans,1))

end

end

Note that we have to produce n + 1 terms of our version of the Fibbonacci sequence and discard the first. This
exactly corresponds to the choice we made to make the base case is correct.

Since the matrices are of a constant 2 x 2 size, the matrix multiplication is actually a constant time operation—we’re
really just doing a handful of integer additions and multiplications. That means that we can compute n Fibbonacci
numbers with total work in O(n) and span O(lgn).

3 Homework 2

This week’s homework asks you to produce algorithms solving two different problems. As a way to introduce the
problems to you, we’ll now go over the brute force solutions to both. Your solutions will need to be substantially
more clever; these brute force solutions are basically just direct transcriptions of the formal statement of the problem
into SML syntax.

3.1 Closest Pair

The closest pair problem is to find the closest pair of points when given an unordered list of points in some two
dimensional Euclidian space. Specifically, if d is the distance function for the space and s is a sequence set of points,
you want to compute

min {d(p;, p;)|0 < i <[s,0 < j <[s],i #j}

functor NaiveClosestPair (P : CP_PACKAGE) : CLOSEST_PAIR =
struct

structure Seq = P.Seq

structure Point = P.Point

open Seq

open Point

fun closestDist (s : point seq) =
let

(» generate all not-equal index pairs x)

val indices = tabulate (fn x => x) (length s)

val allindpair = flatten (map
(fn x =>

map (fn y => (x,y)) 1indices)

indices)

val negs = filter (op=) allindpair

(» compute all the pair wise distances x)

Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2011)

val dists = map (fn (x,y) => dist(nth s x, nth s y)) neqgs
in
(* minimize over them =)
reduce Real.min Real.maxFinite dists
end
end

3.2 Pittsburgh Skyline Problem

Given a sequence of buildings B = (b1, ba, ..., b,), where each b; = (I;, h;, ;), the Pittsburgh skyline problem is
to find a sequence of points S = (p1, 2, ..., P2n)> Pi = (i, y;) such that if

X =Ugnmesil,r}

then
S = sorty{(zr,max{h: (l,h,r) e Bl<zx<r}):z€X}

where sort, sorts the points by their x-coordinate.

functor NaiveSkyline (Seqg : SEQUENCE) : SKYLINE =
struct

structure Seq = Seq

open Seq

fun skyline b

let
fun L (1,h,r) =1
fun H (1,h,r) = h
fun R (1,h,r) = ¢
fun between x (1,_,r) = 1 <= x andalso x < r
fun only x = filter (between x)

(# all x coordinates of any building *)
val X = merge Int.compare (map L b) (map R b)

val col = map (fn x => (x, reduce Int.max 0
(map H (only x b))))
X
fun ord ((x,_), (y,_)) = Int.compare(x,Vy)

in
sort ord col
end
end

	Announcements
	Scan
	Definition
	Note on Terminology
	Example Uses of Scan
	+-scan
	Matching Parentheses
	Stock Market Problem
	Computing Fibbonacci Numbers

	Homework 2
	Closest Pair
	Pittsburgh Skyline Problem

