
Recitation 1 — Parenthesis Matching and SML Review

Parallel and Sequenctial Data Structures and Algorithms, 15-210 (Fall 2011)

August 31, 2011

This recitation is aimed at helping you shake off some dust from the summer and getting you started
on Homework 1. As with last semester in 15-150, we are using SML/NJ as our default programming
language. We also expect you to write readable code and readable mathematical proofs.

1 Announcements

Where is my assignment? We are experimenting with a new way of handing out assignments. Unlike
last semester, we won’t be putting tar balls on the web for you to download. Instead, we’ll distribute the
assignments through a read-only git1 repository. To start you off, we’ve put together a handout on git
commands, with pointers to more advanced features:

http://www.cs.cmu.edu/˜15210/resources/git.pdf

which will also be linked from the Resources page.

What is my grade? If you want to know your grades, as well as other class stats, visit the Gradebook page
on the course web site and follow the instructions there. For security reasons, you can only view your
own grades, and you will be authenticated via WebISO if you aren’t currently logged on.

2 The Fun Starts Now

As a running example, we will look at the parenthesis matching problem, which is defined as follows:

• Input: a char sequence s : char Sequence.seq, where each si is either an “(“ or “)”.
For instance, we could get a parenthesis-matched sequence

s = 〈(,(,),(,),)〉

or a non-matching one
t = 〈),(,),(,),)〉

• Output: true if s represents a parenthesis-matched string and false otherwise. In the above
examples, the algorithm should output true on input s and false on input t.

To simplify the presentation, we will be working with a paren data type instead of characters. Specifically,
we will write a function match of type paren Sequence.seq -> bool that determines whether
the input is a well-formed parenthesis expression (i.e., it is a parenthesis-matched sequence). The type
paren is given by

1git is a fully distributed version control system, initially developed for Linux kernel development.

http://www.cs.cmu.edu/~15210/resources/git.pdf

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2011)

datatype paren =
OPAREN

| CPAREN

where OPAREN represents an open parenthesis and CPAREN represents a close parenthesis.

How would we go about solving this problem?

3 Sequence Fold (Ahh.. It’s called “iterate” in 210)

We’ll begin with the simplest sequential solution and work our way to a work-optimal parallel solution.
The 15-210 package has various sequence implementations, all ascribing to the SEQUENCE signature.
This is pretty similar to what you had in 15-150, so you should feel right at home.

For the current problem, we’ll recall the function iter (for iterate) from the sequence library. It has the
following type:

val iter : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b

Now if f is a function, b is a value, and s is a sequence value, then iter f b s iterates f with left
association on s using b as the base case.

How can we use this to solve the parenthesis matching problem? A simple way of thinking about the
iter function is to think of it as a state transition. The function f that we pass to iter is responsible
for transforming the state upon seeing an input element. For this problem, we want the state to keep
track of the number of unmatched open parentheses so far. Therefore, when we see an open paren, the
number goes up by 1, and when we see a close paren, the number goes down by 1. Using this rule, the
number could go below zero if we see more close parens than open parens. This is when we know we
can’t possibly have a well-formed parenthesis expression—we’ll designate a special state to represent this
outcome.

More specifically, our state is an int option, where we use SOME opens to mean “we have opens
unmatched open parens” and NONE to mean “we have seen too many close parens and the expression is
not well-formed.” We start with SOME 0 as our initial state because there is no unmatched open parens at
the beginning—and it is not difficult to see that an expression is well-formed if and only if we leave no
unmatched parens at the end (i.e., the state is SOME 0).

This leads to the following code:

fun match s =
let
fun check (NONE, _) = NONE

| check (SOME c, OPAREN) = SOME(c+1)
| check (SOME c, CPAREN) =

case (Int.compare (c,0))
of GREATER => SOME (c-1)
| _ => NONE

2

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2011)

in
case (iter check (SOME 0) (preproc s))
of SOME(0) => true
| _ => false

end

You can show that this solution has O(n) work and depth, where n is the length of the input sequence.
How can we make it more parallel?

4 Divide and Conquer

As you have already seen in previous classes, divide and conquer is a powerful technique in algorithms
design that often leads to efficient parallel algorithms. A typical divide and conquer algorithm consists of
3 main steps (1) divide, (2) recurse, and (3) combine.

To follow this recipe, we first need to answer the question: how should we divide up the sequence? We’ll
first try the simplest choice, which is to split it in half—and attempt the merge their results somehow. This
leads to the next question: what would the recursive calls return?

The first thing that comes to mind might be that the function returns whether the given sequence is
well-formed. Clearly, if both s1 and s2 are well-formed expressions, s1 concatenated with s2 must be
a well-formed expression. The problem is that we could have s1 and s2 such that neither of which is
well-formed but s1s2 is well-formed (e.g., “(((” and “)))”). This is not enough information to conclude
whether s1s2 is well-formed.

We need more information from the recursive calls. You are probably already familiar with a similar
situation from mathematical induction—you often need to strengthen the inductive hypothesis. We’ll
crucially rely on the following observations (which can be formally shown by induction):

Observation 4.1. If s contains “()” as a substring, then s is a well-formed parenthesis expression if and
only if s′ derived by removing this pair of parenthesis “()” from s is a well-formed expression.

Applying this reduction repeatedly, we can show that a parenthesis sequence is well-formed if and only if
it eventually reduces to an empty string.

Observation 4.2. If s does not contain “()” as a substring, then s has the form “)i(j”. That is, it is a
sequence of close parens followed by a sequence of open parens.

That is to say, on a given sequence s, we’ll keep simplifying s conceptually until it contains no substring
“()” and return the pair (i, j) as our result. This is relatively easy to do recursively. Consider that if
s = s1s2, after repeatedly getting rid of “()” in s1 and separately in s2, we’ll have that s1 reduces to “)i(j”
and s2 reduces to “)k(`” for some i, j, k, ` ∈ Z+ ∪ {0}. To completely simplify s, we merge the results.
That is, we merge “)i(j” with “)k(`”. The rules are simple:

• If j ≤ k (i.e., more close parens than open parens), we’ll get “)i+k−j(`”.

• Otherwise j > k (i.e., more open parens than close parens), we’ll get “)i(`+j−k”.

This directly leads to a divide and conquer algorithm.

3

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2011)

4.1 How to split a sequence in half?

The sequence library we give you provides a conceptual view of sequences called treeview that lends
itself particularly well to divide-and-conquer algorithms. The library provides showt and hidet for
cutting up and assembling sequences; these functions have similar functionality as showt and hidet
from 15-150 last semester. To review, we have a data type ’a treeview defined as follows:

datatype ’a treeview =
EMPTY

| ELT of ’a
| NODE of (’a seq * ’a seq)

The function showt provides a means to examine the sequence in the tree view. It has the following type:

val showt : ’a seq -> ’a treeview

The specification of showt can be summarized as follows: Let s be a sequence value.

– If |s| = 0, showt s evaluates to EMPTY.

– If |s| = 1, showt s evaluates to ELT(s0).

– If |s| > 1, and NODE(take (s, (|s|/2)), drop (s, (|s|/2))) evaluates to some value v,
showt s evaluates to v.

Essentially, showt s splits the sequence in approximately half and returns both halves as sequences.

4.2 Implementing the algorithm in treeview

fun match s =
let
fun match’ s =

case (showt s)
of EMPTY => (0,0)
| ELT OPAREN => (0,1)
| ELT CPAREN => (1,0)
| NODE (L,R) =>

let
val (i,j) = match’ L
val (k,l) = match’ R

in
case Int.compare(j,k)
of GREATER => (i, l + j - k)
| _ => (i + k - j, l)

end
in

case (match’ (preproc s))

4

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2011)

of (0,0) => true
| _ => false

end

Running Time Analysis: Let’s assume that showt s NONE takes O(log n) work and depth on any
sequence of length n. We can formulate the work and depth recurrences as follows:

W (n) = 2 ·W (n/2) + Wshowt(n) = 2 ·W (n/2) + O(log n)
D(n) = D(n/2) + Dshowt(n) = D(n/2) + O(log n).

Clearly, we have D(n) = O(log2 n). We will see in class how to solve this type of recurrences in details.
For now, if you recall from 15-251 or from your formula sheet last semester, W (n) solves to O(n).

5

	Announcements
	The Fun Starts Now
	Sequence Fold (Ahh.. It's called ``iterate'' in 210)
	Divide and Conquer
	How to split a sequence in half?
	Implementing the algorithm in treeview

