
Parallel and Sequential Data Structures and Algorithms — Lecture 27 15-210 (Fall 2011)

Lecture 27 — Dynamic Programming II (DRAFT)

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — Dec 1, 2011

Today:
- Dynamic Programming

1 Dynamic Programming Continued

1.1 Optimal Binary Search Trees

We have talked about using BSTs for storing an ordered set or table. The cost of finding an element is
proportional to the depth of the element in the tree. In a fully balanced BST of size n the average depth of
each element is about log n. Now lets say you are given values associated with each element that specify
the probability that the element will be accessed—perhaps the word “of” is accessed much more often
than “epistemology”. The probabilities across the elements must add to 1. The goal is to make it so that
the more likely elements are closer to the root and hence the average access cost is reduced. This line of
reasoning leads to the following problem:

Definition 1.1. The optimal binary search tree problem is given an ordered set of keys S and a probability
function p : S → [0 : 1], determine:

min
T∈Trees(S)

(∑
s∈S

d(s, T) · p(s)

)

where Trees(S) is the set of all BSTs on S, and d(s, T) is the depth of the key s in the tree T .

For example we might have the following keys and associated probabilities

key k1 k2 k3 k4 k5 k6

p(key) 1/8 1/32 1/16 1/32 1/4 1/2

Then the tree

k5
/ \

k1 k6
\
k3

/ \
k2 k4

has cost 31/16, which is optimal.

1 Version 0.1

Parallel and Sequential Data Structures and Algorithms — Lecture 27 15-210 (Fall 2011)

Exercise 1. Find another tree with equal cost.

As usual we are interested in solving the problem efficiently. A greedy approach might be to pick
the key k with highest probability and put it at the root and then recurse on the two sets less and greater
than k. You should convince yourself that this does not work. Instead lets consider a recursive solution.
In particular lets try placing every element at the root and then recurse on the subproblems and pick the
best of the |S| possibilities. Lets consider how to calculate the cost give the solution to two subproblems.
Assume S is a sequence ordered by the keys and we pick location i (1 ≥ i ≤ |S|) as a the root. We can
now solve the OSBT problem on the prefix S1,i−1 and suffix Si+1,n (the notation Si,j means the locations
of S from i to j). Creating a tree with these two solutions as the left and right children of Si, respectively,
leads to the optimal solution given Si as a root. We therefore might consider adding these two solutions
and the cost of the root (p(Si)) to get the cost of this solution. This, however, is wrong. The problem is
that by placing the solutions to the prefix and suffix as children of Si we have increased the depth of each
of their keys by 1. However we can adjust for this. In particular for each key s in each subtree, its cost has
gone up by p(s) · 1. We therefore have:

OBST(S) = min
i∈〈 1...|S| 〉

OBST(S1,i−1) + OBST(Si+1,|S|) + p(Si) +
∑

s∈Si,i−1

p(s) +
∑

s∈Si+1,|S|

p(s)


=

∑
s∈S

p(s) + min
i∈〈 1...|S| 〉

(
OBST(S1,i−1) + OBST(Si+1,|S|)

)
When we add the base case this leads to the following recursive definition:

1 fun OBST(S) =
2 if |S| = 0 then 0
3 else

∑
s∈S p(s) + mini∈〈 1...|S| 〉

(
OBST(S1,i−1) + OBST(Si+1,|S|)

)
Exercise 2. How would you return the optimal tree in addition to the cost of the tree?

As in the examples of subset sum and minimum edit distance, if we execute the recursive program
directly OBST it will require exponential work. Again, however, we can take advantage of sharing among
the calls to OBST. To bound the number of vertices in the corresponding DAG we need to count the
number of possible arguments to OBST. Note that every argument is a contiguous subsequence from
the original sequence S. A sequence of length n has only n(n + 1)/2 contiguous subsequences since
there are n possible ending positions and for the ith end position there are i possible starting positions
(
∑n

i=1 i = n(n + 1)/2). Therefore the number of possible arguments is at most O(n2). Furthermore the
longest path of vertices in the DAG is at most O(n) since recursion can at most go n levels (each level
removes at least one key).

Unlike our previous examples, however, the cost of each vertex in the DAG (each recursive in our
code not including the subcalls) is no longer constant. The subsequence computations Si,j can be done in
O(1) work each (think about how) but there are O(|S|) of them. Similarly the sum of the p(s) will take
O(|S|) work. To determine the span of a vertex we note that the min and sum can be done with a reduce
in O(log |S|) span. Therefore the work of a vertex is O(|S|) = O(n) and the span is O(log n). Now we
simply multiply the number of vertices by the work of each to get the total work, and the longest path of
vertices by the span of each vertex to get the span. This give O(n3) work and O(n log n) span.

2 Version 0.1

Parallel and Sequential Data Structures and Algorithms — Lecture 27 15-210 (Fall 2011)

This example of the optimal BST is one of several applications of dynamic programming to what
are effectively trying all binary trees and determining an optimal tree given some cost criteria. Another
such problem is the matrix chain product problem. In this problem one is given a chain of matrices to
be multiplied (A1 × A2 × · · ·An) and wants to determine the cheapest order to execute the multiplies.
For example given the sequence of matrices A×B × C it can either be ordered as (A×B)× C or as
A× (B × C). If the matrices have sizes 2× 10, 10× 2, and 2× 10, respectively, it is much cheaper to
calculate (A × B) × C than a × (B × C). The matrix chain product problem can be solved in a very
similar structure as the OBST algorithm and with the same cost bounds.

2 Coding Dynamic Programs

So far we have assumed some sort of magic recognized shared subproblems in our recursive codes and
avoided recomputation. This sort of magic could actually be fully automated in the functional setting using
a technique called hash consing 1, but no languages do this so we are left to our own means. As mentioned
in the last lecture there are basically two techniques to code up dynamic programming techniques: the
top-down approach and the bottom-up approach.

Top-Down Dynamic Programming

The top-down approach is based on running the recursive code basically as is but generating a mapping
from input argument to solution as we proceed. This way when we come across the same argument a
second time we can just look up the solution. This is called memoization, and the table used to map the
arguments to solutions is called a memo table. The tricky part of memoization is checking for equality of
arguments since the arguments might not be simple values such as integers. Indeed in our examples so far
the arguments have all involved sequences. We could compare the whole sequence element by element,
but that would be too expensive. You might think that we can do it by comparing “pointers” to the values,
but this does not work since the sequences can be created separately so even though the values are equal
there could be two copies of the same value in different locations and comparing pointers would say they
are not equal and we would fail to recognize that we have already solved this instance.

To get around this problem the top-down approach typically requires that the user create integer
surrogates that represent the input values2. The property of these integers is that there has to be a 1-to-
1 correspondence between the integers and the argument values—therefore if the integers match, the
arguments match. The user is responsible for guaranteeing this.

We now cover how this can be done for dynamic program we described for minimum edit distance
(MED). In 15-150 you covered memoization but you did it using side effects. Here we will do it in a
purely functional way. This requires that we “thread” the table that maps arguments to results through the
computation. Although this requires a few extra characters of code, it is safer for parallelism.

Recall that MED takes two sequences and on each recursive call only uses suffixes of the two original
sequences. To create integer surrogates we can therefore simply use the length of each suffix. There is
clearly a 1-to-1 mapping from these integers to the suffixes. MED can work from either end of the string

1Basically every distinct value is given a unique ID so that testing for equality even for sequences, sets or other complex
types can be done very cheaply even if constructed separately.

2other simple types would also work.

3 Version 0.1

Parallel and Sequential Data Structures and Algorithms — Lecture 27 15-210 (Fall 2011)

so instead of working front to back and using suffix lengths it could work back to front and use prefix
lengths—we do this since it simplifies the indexing. This leads to the following variant of our MED code.

1 fun MED(S, T) = let
2 fun MED′(i, 0) = i
3 | MED′(0, j) = j
4 | MED′(i, j) =case (Si = Tj) of
5 true⇒ MED′(i− 1, j − 1)
6 | false⇒ 1 + min(MED′(i, j − 1),MED′(i− 1, j))
7 in
8 MED′(|S|, |T |)
9 end

We can now find solutions in our memo table quickly since it can be indexed on i and j. In fact since the
arguments range from 0 to the length of the sequence we can actually use an array to store the table values.

Now we can actually implement the memoization. To do this we define a memoization function:

1 fun memo f (M,a) =
2 case find(T, a) of
3 SOME(v)⇒ v
4 | NONE ⇒ let
5 val (M ′, v) = f(M,a)
6 in
7 (update(M ′, a, v), v)
8 end

In this function f is the function that is being memoized, M is the memo table, and a is the argument
to f . This function simply looks up the value a in the memo table. If it exists, then it returns the
corresponding result, otherwise it evaluates the function on the argument and stores the result in the memo
table. We can now write MED using memoization.

1 fun MED(S, T) = let
2 fun MED′(M, (i, 0)) = (M, i)
3 | MED′(M, (0, j)) = (M, j)
4 | MED′(M, (i, j)) =case (Si = Tj) of
5 true⇒ MED′′(M, (i− 1, j − 1))
6 | false⇒ let
7 val (M ′, v1) = MED′′(M, (i, j − 1))
8 val (M ′′, v2) = MED′′(M ′, (i− 1, j))
9 in (M ′′, 1 + min(v1, v2)) end

10 and MED′′(M, (i, j)) = memo MED′ (M, (i, j))
11 in
12 MED′({} , (|S|, |T |))
13 end

4 Version 0.1

Parallel and Sequential Data Structures and Algorithms — Lecture 27 15-210 (Fall 2011)

Note that the memo table M is threaded throughout the computation. In particular every call toe
MED not only takes a memo table as an argument but also returns a possibly different memo table as a
result. Because of this passing the code is purely functional. The problem with the top-down approach
as described, however, is that it is inherently sequential. By threading the memo state we force a total
ordering on all calls to MED. It is easy to create a version that uses side effects, as you did in 15-150 or as
is typically done in imperative languages. Now the calls to MED can be made in parallel. However, then
one has to be very careful since there can be race conditions (parallel threads modifying the same cells).
Furthermore if two parallel threads make a call on MED on the same argument then they can and will
often both end up doing the work. There are ways around this which are also fully safe—i.e. from the
users point of view all calls look completely functional, but they are beyond the scope of this course.

Bottom-Up Dynamic Programming

We will now consider a different technique for implementing dynamic programs. Instead of simulating
the recursive structure, which starts at the root of the DAG, it starts at the leaves of the DAG and fills in
the results in some order that is consistent with the DAG–i.e. for all edges (u, v) it always calculates the
value at a vertex u before working on v. Because of this all values will be already calculated when they
are needed.

The simplest way to implement bottom-up dynamic programming is to do some form of systematic
traversal of a DAG and it is therefore useful to understand the structure of the DAG. For example lets
consider the structure of the DAG for minimum edit distance. In particular lets consider the two strings
S = tcat and T = atc. We can draw the DAG as follows where all the edges go down and to the right.

t c a t

1 2 3 4 = i
| | \ |

a 1---o---o o---o
\ | | \

t 2 o o---o o
| \ | |

c 3---o o---o---o

= j

The numbers represent the i and the j for that position in the string. Consider MED(4, 3). The characters
S4 and T3 are not equal so the recursive calls are to MED(3, 3) and MED(4, 2). This corresponds to the
vertex to the left and the one above. Now if we consider MED(4, 2) the characters S4 and T2 are equal so
the recursive call is to MED(3, 1). This corresponds to the vertex diagonally above and to the left. In fact
whenever the characters Si and Tj are not equal we have edges from directly above and directly to the left,
and whenever they are equal we have an edge from the diagonal to the left and above. This tells us quite a
bit about the DAG. In particular it tells us that it is safe to process the vertices by first traversing the first
row from left to right, and then the second row, and so on. It is also safe to traverse the first column from
top to bottom and then the second and so on. In fact it is safe to process the diagonals in the / direction
from top left moving to the bottom right. In this case each diagonal can be done in parallel.

5 Version 0.1

Parallel and Sequential Data Structures and Algorithms — Lecture 27 15-210 (Fall 2011)

In general when applying MED(S, T) we can use an |T | × |S| array to store all the partial results. We
can then process the array either by row, column, or diagonal. This can be coded as follows.

1 fun MED(S, T) = let
2 fun MED′(M, (i, 0)) = i
3 | MED′(M, (0, j)) = j
4 | MED′(M, (i, j)) =case (Si = Tj) of
5 true⇒Mi−1,j−1

6 | false⇒ 1 + min(Mi,j−1, Mi−1,j)

7 fun diagonals(M,k) =
8 if (k > |S|+ |T |) then M
9 else let

10 val s = max(0, k − n)
11 val e = min(k, m)
12 val M ′ = M ∪ {(i, k − i) 7→MED(M, (i, k − i)) : i ∈ {s, . . . , e}}
13 in
14 diagonals(M ′, k + 1)
15 end

16 in
17 diagonals({} , 0)
18 end
19

The code uses a table M to store the array entries. In practice an array might do better. Each round of
diagonals processes one diagonal and updates the table M . We note that the index calculations are a
bit tricky (hopefully we got them right). The size of the diagonal grows and then shrinks.

OBST Revisited. We now return to the OBST problem. As with the MED problem we first replace the
sequences in the arguments with integers. In particular we describe any subsequence of the original sorted
sequence of keys S to be put in the BST by its offset from the start (i, 1-based) and its length l. We then
get the following recursive routine.

1 fun OBST(S) = let
2 fun OBST’(i, l) =
3 if l = 0 then 0
4 else

∑l−1
k=0 p(Si+k) + minl−1

k=0 (OBST’(i, k) + OBST’(i + k + 1, l − k − 1))
5 in
6 OBST(1, |S|)
7 end

This modified version can now more easily be used for either the top-down solution using memoization
or the bottom-up solution. In the bottom-up solution we note that we can build a table with the columns
corresponding to the i and the rows corresponding to the l. Each of them range from 1 to n (n = |S|). It
would as follows:

6 Version 0.1

Parallel and Sequential Data Structures and Algorithms — Lecture 27 15-210 (Fall 2011)

1 2 ... n
1 /
2 /
. /
. /
n /

The table is triangular since as l increases the number of subsequences of that length decreases. This table
can be filled up row by row since every row only depends on elements in rows above it. Each row can be
done in parallel.

7 Version 0.1

	Dynamic Programming Continued
	Optimal Binary Search Trees

	Coding Dynamic Programs

