
Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Fall 2011)

Lecture 26 — Dynamic Programming I (DRAFT)

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — Nov 29, 2011

Today:
- Dynamic Programming

1 Dynamic Programming

“An interesting question is, ’Where did the name, dynamic programming, come from?’ The
1950s were not good years for mathematical research. We had a very interesting gentleman in
Washington name Wilson. He was Secretary of Defense, and he actually had a pathological
fear and hatred of the word, research. I’m not using the term lightly; I’m using it precisely.
His face would suffuse, he would turn red, and he would get violent if people used the term,
research, in his presence. You can imagine how he felt, then, about the term, mathematical.
The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its
boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air Force from
the fact that I was really doing mathematics inside the RAND Corporation. What title, what
name, could I choose? In the first place I was interested in planning, in decision making, in
thinking. But planning, is not a good word for various reasons. I decided therefore to use
the word, ‘programming.’ I wanted to get across the idea that this was dynamic, this was
multistage, this was time-varying—I thought, let’s kill two birds with one stone. Let’s take a
word that has an absolutely precise meaning, namely dynamic, in the classical physical sense.
It also has a very interesting property as an adjective, and that is it’s impossible to use the
word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly
give it a pejorative meaning. It’s impossible. This, I thought dynamic programming was a
good name. It was something not even a Congressman could object to. So I used it as an
umbrella for my activities”.
Richard Bellman (“Eye of the Hurricane: An autobiography”, World Scientific, 1984)

The Bellman-Ford shortest path algorithm we have covered is named after Richard Bellman, and
Lester Ford. In fact that algorithm can be viewed as a dynamic program. Although the quote is an
interesting bit of history it does not tell us much about dynamic programming. But perhaps the quote will
make you feel better about the fact that the term has little intuitive meaning.1

In this course, as commonly used in computer science, we will use the term to mean an algorithmic
technique in which (1) one constructs the solution of a larger problem instance by composing solutions to
smaller instances, and (2) the solution to each smaller instance can be used in multiple larger instances.
Dynamic programming is thus one of the inductive algorithmic techniques we have are covering in this
course. Recall from Lecture 2 that in all the inductive techniques an algorithm relies on putting together

1And perhaps it will make you feel more compelled to fight scientific bigotry among our politicians.

1 Version 0

Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Fall 2011)

smaller parts to create a larger solution. The correctness then follows by induction on problem size. The
beauty of such techniques is that the proof of correctness parallels the algorithmic structure.

So far the inductive approaches we have covered are divide-and-conquer, the greedy method, and
contraction. In the greedy method and contraction each instance makes use of only a single smaller
instance. In the case of greedy algorithms the single instance was one smaller—e.g. solving the set
cover problem (approximately) by removing the “best” set. In the case of contraction it is typically a
constant fractions smaller—e.g. solving the scan problem by solving an instance of half the size, or graph
connectivity by contracting the graph by a constant fraction.

In the case of divide-and-conquer, as with dynamic programming, we made use of multiple smaller
instances to solve a single larger instance. However in D&C we have always assumed the solutions are
solved independently and hence we have simply added up the work of each of the recursive calls. But
what if two instances of size k, for example, both need the solution to the same instance of size j < k.

foo(A) foo(B) size k
ˆ ˆ ˆ ˆ
| \/ |
| /\ |

foo(C) foo(D) size j < k

Although in the simple example sharing the results will only make at most a factor of two difference
in work, in general sharing the results of subproblems can make an exponential difference in the work
performed. The simplest, albeit not particularly useful, example is in calculating the Fibonacci numbers.
As you have likely seen, one can easily write the recursive algorithm for Fibonacci:

1 fun fib(n) =
2 if (n ≤ 1) then 1
3 else fib(n− 1) + fib(n− 2)

but this will take exponential time in n. However, if the results from the instances are somehow shared
then the algorithm only requires linear work:

fib(5)
| \
| fib(4)
| / |

fib(3) |
| \ |
| fib(2)
| / |

fib(1) |
\ |
fib(0)

It turns out there are many quite practical problems where sharing of sub results is useful and can
make a significant differences in the work used to solve a problem. In the course we will go through
several of these examples.

2 Version 0

Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Fall 2011)

With divide-and-conquer the composition of a problem instance in terms of smaller instances is
typically described as a tree, and in particular the so called recursion tree. With dynamic programming
the composition can instead be viewed as a Directed Acyclic Graph (DAG). Each vertex in the DAG
corresponds to a problem instance and each edge goes from an instance of size j to one of size k > j—i.e.
we direct the edges (arcs) from smaller instances to the larger ones that use them2 We direct them this
way since the edges can be viewed as representing dependences between the source and destination (i.e.
the source has to be calculated before the destination can be). The leafs of this DAG (i.e. vertices with
no in-edges) are the base cases of our induction (instances that can be solved directly), and the root of
the DAG (the vertex with no out-edges) is the instance we are trying to solve. More generally we might
actually have multiple roots, although this can be converted into a DAG with a single root by adding a
new vertex and an edge from each of the previous roots to this single new root.

Abstractly dynamic programming can therefore be best viewed as evaluating a DAG by propagating
values from the leafs to the root and performing some calculation at each vertex based on the values of
its in-neighbors. Based on this view calculating the work and span of a dynamic program is relatively
straightforward. We can associate with each vertex a work and span required for that vertex. The overall
work is then simply the sum of the work across the vertices. The overall span is the longest path in
the DAG where the path length is the sum of the spans of the vertices along that path. Many dynamic
programs have significant parallelism although some do not. For example consider the following DAG in
which the work and span for each vertex is given.

(5,2) (11,3)
o ------>o----

ˆ \
(3,1) / v

o -----o---o---o (1,1)
(2,2) (4,1)

This does 5 + 11 + 3 + 2 + 4 + 1 = 26 units of work and has a span of 1 + 2 + 3 + 1 = 7.

The challenging part of developing an algorithm for a problem based on dynamic programming is
figuring out what DAG to use. The best way to do this, of course, is to think inductively—how can I solve
an instance of a problem by composing the solution to smaller instances? Once an inductive solution
is formulated you can think about whether the solutions can be shared and how much savings can be
achieved by sharing. As with all algorithmic techniques, being able to come up with solutions takes
practice. We note however that most problems that can be tackled with dynamic programming solutions
are either optimization or decision problems. An optimization problem is one in which we are trying to
find a solution that optimizes some criteria (e.g. finding a shortest path, or finding the longest contiguous
subsequence sum). A decision problem is one in which we are trying to find if a solution exists.

Although abstractly dynamic programming can be viewed as a DAG, in practice we need to implement
(code) the dynamic program. There are two common ways to do this, which are referred to as the
top-down and bottom-up approaches. The top down approach uses recursion as in divide-and-conquer but
remembers solutions so if the algorithm tries to solve the same instance many times only the first call does
the work and the rest just look up the solution. Storing solutions for reuse is called memoization. The
bottom-up approach starts at the leaves of the DAG and typically processes the DAG in some form of

2Note that “size” is used in an abstract sense and does not necessarily mean the size (e.g. number of bytes) of the input but
rather any measure that can be used for inductive purposes.

3 Version 0

Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Fall 2011)

level order traversal—for example,e by processing all problems of size 1 and then 2 and then 3, and so on.
Each approach has its advantages and disadvantages. Using the top-down approach (divide-and-conquer
with memoization) can be quite elegant and can be more efficient in certain situations by evaluating fewer
instances. Using the bottom up approach (level order traversal of the DAG) can be easier to parallelize and
also more space efficient. It is important, however, to remember to first formulate the problem abstractly
in terms of the inductive structure, then think about it in terms of how substructure is shared in a DAG,
and only then worry about coding strategies.

1.1 Subset Sums

The first problem we will cover in this class is the subset sum problem:

Definition 1.1. The subset sum (SS) problem is given a multiset of integers S and an integer value k to
determine if there is any X ⊂ S such that

∑
x∈X x = k.

In the general case when k is unconstrained this problem is a classic NP hard problem. However, our
goals here are more modest. We are going to consider the case where we include k is the work bounds.
We show that as long as k is polynomial in n then the work is also polynomial in n. Solutions of this form
are often called pseudo-polynomial work (time) solutions.

This problem can be solved by brute force simply considering all possible subsets. This clearly takes
exponential time. For a more efficient solution, one should first consider an inductive solution to the
problem. You might consider some form of greedy method greedily takes elements from S. Unfortunately
this does not work.

We therefore consider a divide-and-conquer solution. Naively this will also lead to exponential work,
but by reusing subproblems we can show that it results in an algorithm that requires only O(|S|k) work.
The idea is to take one element a out of S and consider the two possibilities: either a is included in X or
not. For each these two possibilities we make a recursive call—in one case we subtract a from k (a ∈ X)
and in the other case we leave k as is (a 6∈ X). Here is an algorithm based on this idea. It assumes the
input is given as a list (the order of the elements of S in the list does not matter):

1 fun SS(S, k) =
2 case (showl(S), k) of
3 (, 0)⇒ true
4 | (NIL,)⇒ false
5 | (CONS(a, R),)⇒
6 if (a > k) then SS(R, k)
7 else (SS(R, k − a) orelse SS(R, k))

Everything except for the first and last line are base cases. In particular if k = 0 then the result is true
since the empty set adds to zero. If k 6= 0 and S is empty, then the result is false since there is no way to
get k from an empty set. If S is not empty but its first element a is greater than k then we clearly can’t
add a to X , so we need only make one recursive call. The last line is the main inductive case were we
either include a or not. In both cases we remove a from S in the recursive call R.

So what is the work of this algorithm. Well it leads to a binary recursion tree that might be n deep. This
would imply something like 2n work. This is not good. The key observation, however, is that there is a
huge overlap in the subproblems. For example here is the recursion tree for the instance SS({1, 1, 1} , 3):

4 Version 0

Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Fall 2011)

SS({1,1,1}, 3)
/ \

SS({1,1}, 2) SS({1,1}, 3)
/ \ / \

SS({1}, 1) SS({1}, 2) SS({1}, 2) SS({1}, 3)
/ \ / \ / \ / \

SS({}, 0) SS({}, 1) SS({}, 1) SS({}, 2) SS({}, 1) SS({}, 2) SS({}, 2) SS({}, 3)

As you should notice there are many common calls. In the bottom row, for example there are three calls
each to SS(, 1) and SS(, 2). If we coalesce the common call we get the following DAG where the edges
are all going up, the leaves are at the bottom and root is at the top.

SS({1,1,1}, 3)
/ \

SS({1,1}, 2) SS({1,1}, 3)
/ \ / \

SS({1}, 1) SS({1}, 2) SS({1}, 3)
/ \ / \ / \

SS({}, 0) SS({}, 1) SS({}, 2) SS({}, 3)

The question is how do we bound the number of distinct instances of SS, which is also the number of
vertices in the DAG?

Well for an initial instance SS(Ss, ks) there are are only |Ss| distinct lists that are ever used (each
suffix of Ss). Furthermore k only decreases and never goes below 0, so it can take on at most ks +1 values.
Therefore the total number of possible instances of SS (vertices in the DAG) is |Ss|(ks + 1) = O(k|Ss|).
Each instance only does constant work to compose its recursive calls. Therefore the total work is O(k|Ss|).
Furthermore it should be clear that the longest path in the DAG is O(|Ss|) so the total span is O(|Ss|) and
the algorithm has O(k) parallelism.

At this point we have not fully specified the algorithm since we have not explained how to take
advantage of the sharing—certainly the recursive code we wrote would not. We will get back to this after
a couple more examples. Again we want to emphasize that the first two orders of business are to figure
out the inductive structure and figure out what instances can be shared.

1.2 Minimum Edit Distance

The second problem we consider is the minimum edit distance problem.

Definition 1.2. The minimum edit distance (MED) problem is given a character set Σ and two sequences
of characters S = Σ∗ and T = Σ∗ to determine the minimum number of insertions and deletions of single
characters required to transform S to T .

For example if we started with the sequence

S = 〈A, B,C, A, D,A 〉

we could convert it to
T = 〈A, B,A, D, C 〉

5 Version 0

Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Fall 2011)

with 3 edits (delete the C, delete the last A and insert a C). This is the best that can be done so the minimum
edit distance is 3.

The MED problem is an important problem that has many applications. For example in version control
systems such as git or svn when you update a file and commit it, the system does not store the new
version but instead only stores the “difference” from the previous version3. This is important since often
the user is only making small changes and it would be wasteful to store the whole file. Variants of the
minimum edit distance problem are use to find this “difference”. Edit distance can also be used to reduce
communication costs by only communicating the differences from a previous version. It turns out that
edit-distance is also closely related to approximate matching of genome sequences.

One might consider a greedy method that scans the sequence finding the first difference, fixing it and
then moving on. Unfortunately no simple greedy method is known to work. The problem is that there can
be multiple ways to fix the error—we can either delete the offending character, or insert a new one. In the
example above when we get to the C in S we could either delete C or insert an A. If we greedily pick the
wrong way to fix it, we might not end up with an optimal solution. Again in the example, if you inserted
an A, then more than two more edits will be required.

However, considering the greedy solution gives a good hint of how to find a correct solution. In
particular when we get to the C in our example there were exactly two possible ways to fix it—deleting C
or inserting A. As with the subset sum problem, why not consider both ways. This leads to the following
algorithm.

1 fun MED(S, T) =
2 case (showl(S),showl(T)) of
3 (,NIL)⇒ |S|
4 | (NIL,)⇒ |T |
5 | (CONS(s, S′),CONS(t, T ′))⇒
6 if (s = t) then MED(S′, T ′)
7 else 1 + min(MED(S, T ′),MED(S′, T))

In the first base case where T is empty we need to delete all of S to generate an empty string requiring
|S| insertions. In the second base case where S is empty we need to insert all of T , requiring |T | insertions.
If neither is empty we compare the first character. If they are equal we can just skip them and make a
recursive call on the rest of the sequences. If they are different then we need to consider the two cases.
The first case (MED(S, T ′)) corresponds to inserting the value t. We pay one edit for the insertion and then
need to match up S (which all remains) with the tail of T (we have already matched up the head t with
the character we inserted). The second case (MED(S′, T)) corresponds to deleting the value s. We pay
one edit for the deletion and then need to match up the tail of S (the head has been deleted) with all of T .

If we ran the code recursively we would end up with an algorithm that takes exponential work. In
particular the recursion tree is binary and has a depth that is linear in the size of S and T . However, as
with subset sums, there is significant sharing going on. Again we view the computation as a DAG in
which each vertex corresponds to call to MED with distinct arguments. An edge is placed from u to v if
the call v uses u. For example here is the DAG for MED(〈A, B,C 〉 , 〈D,B,C 〉) (all edges point up):

MED({A,B,C},{D,B,C})

3Alternatively it might store the new version, but use the difference to encode the old version.

6 Version 0

Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Fall 2011)

/ \
MED({B,C},{D,B,C}) MED({A,B,C},{B,C})

/ \ / \
MED({C},{D,B,C}) MED({B,C},{B,C}) MED({A,B,C},{C})
/ \ | / \

MED({},{D,B,C}) MED({C},{B,C}) MED({C},{C}) MED({B,C},{C}) MED({A,B,C},{})
/ \ | / \

MED({},{B,C}) MED({C},{C}) MED({},{}) MED({C},{C}) MED({B,C},{})
| |

MED({},{}) MED({},{})

We can now place an upper bound on the number of vertices in our DAG by bounding the number of
distinct arguments. There can be at most |S|+ 1 possible values of the first argument since in recursive
calls we only use suffixes of the original S and there are only |S| + 1 such suffixes (including the
empty and complete suffixes). Similarly there can be at most |T | + 1 possible values for the second
argument. Therefore the total number of possible distinct arguments to MED on original strings S and T is
(|T |+ 1)(|S|+ 1) = O(|S||T |). Furthermore the depth of the DAG (longest path) is O(|S|+ |T |) since
each recursive call either removes an element from S or T so after |S| + |T | calls there cannot be any
element left. Finally we note that assuming we have constant work operations for removing the head of a
sequence (e.g. using a list) then each vertex of the DAG takes constant work and span.

All together this gives us
W (MED(S, T)) = O(|S||T |)

and
S(MED(S, T)) = O(|S|+ |T |).

1.3 Problems with Efficient Dynamic Programming Solutions

1. Fibonacci numbers

2. Using only addition compute (n choose k) in O(nk) work

3. Edit distance between two strings

4. Edit distance between multiple strings

5. Longest common subsequence

6. Maximum weight common subsequence

7. Can two strings S1 and S2 be interleaved into S3

8. Longest palindrome

9. longest increasing subsequence

10. Sequence alignment

11. Sequence alignment with gaps

12. subset sum

7 Version 0

Parallel and Sequential Data Structures and Algorithms — Lecture 26 15-210 (Fall 2011)

13. knapsack problem (with and without repetitions)

14. weighted interval scheduling

15. line breaking in paragraphs

16. break words in which space has been removed

17. chain matrix product

18. multiplication with a non associative operation – does any parenthesization give a desired result.

19. maximum value for parenthesizing x1/x2/x3.../xn for positive rational numbers

20. cutting a string at given locations to minimize cost (costs n to make cut)

21. all shortest paths

22. find maximum independent set in trees

23. smallest vertex cover on a tree

24. optimal bst

25. probability of generating exactly k heads with n biased coin tosses

26. triangulate a convex polygon while minimizing the length of the added edges

27. cutting squares of given sizes out of a grid

28. card game while picking largest value from one end or the other.

29. change making

30. box stacking

31. segmented least squares problem

32. counting boolean parenthesization – true, false, or, and, xor, count how many parenthesization
return true

33. balanced partition – given a set of integers up to k, determine most balanced two way partition

34. RNA secondary structure

35. Largest common subtree

8 Version 0

	Dynamic Programming
	Subset Sums
	Minimum Edit Distance
	Problems with Efficient Dynamic Programming Solutions

