
Parallel and Sequential Data Structures and Algorithms — Lecture 25 15-210 (Fall 2011)

Lecture 25 — Hashing (DRAFT)

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — Nov 22, 2011

Today:
- Hashing

1 Hashing

hash: transitive verb1

1. (a) to chop (as meat and potatoes) into small pieces
(b) confuse, muddle

2. ...

This is the definition of hash from which the computer term was derived. The idea of hashing as originally
conceived was to take values and to chop and mix them to the point that the original values are muddled.
The term as used in computer science dates back to the early 1950s.

More formally the idea of hashing is to approximate a random function h : α→ β from a source set
α to a destination set β. Most often the source set is significantly larger than the destination set, so the
function not only chops and mixes but also reduces. In fact the source set might have infinite size, such as
all character strings, while the destination set always has finite size. Also the source set might consist
of complicated elements, such as the set of all directed graphs, while the destination are typically the
integers in some fixed range. Hash functions are therefore many to one functions.

Using an actual randomly selected function from the set of all functions from α to β is typically not
practical due to the number of such functions and hence the size (number of bits) needed to represent such
a function. Therefore in practice one uses some pseudorandom function.

Exercise 1. How many hash functions are there that map from a source set of size n to the integers from 1
to m? How many bits does it take to represent them? What if the source set consists of character strings
up length up to 20. Assume there are 100 possible characters.

Why is it useful to have random or pseudo random functions that map from some large set to a smaller
set. Generally such functions might be used to hide data, to reorder data in a random order, or to spread
data smoothly over a range. Here we consider some applications of each.

1. We saw how hashing can be used in treaps. In particular we suggested using a hash function to
hash the keys to generate the “random” priorities. Here what was important is that the ordering
of the priorities is somehow random with respect to the keys. Our analysis assumed the priorities
were truly random, but it can be shown that a limited form of randomness that arise out of relatively
simple hash functions is sufficient.

1Merriam Websters

1 Version (fn x⇒ 3x− 4)1

Parallel and Sequential Data Structures and Algorithms — Lecture 25 15-210 (Fall 2011)

2. In cryptography hash functions can be used to hide information. One such applications is in digital
signatures where a so-called secure hash is used to describe a large document with a small number
of bits.

3. Hashing can be used to approximately match documents, or even parts of documents.

4. Hashing is used to implement hash tables. In hash tables one is given a set of keys K ⊂ α and
needs to map them to a range of integers so they can stored at those locations in an array. The goal
is to spread the keys out across the integers as well as possible to minimize the number of keys that
collide in the array. You should not confuse the terms hash function and hash table. They are two
separate ideas, the later that uses the prior.

There is a deep and interesting theory of hash functions. Depending on the application, the needs of
the hash function are very different. We will not cover the theory here but you will likely see it in more
advanced algorithms classes.

So what are some reasonable hash functions. Here we consider some simple ones. For hashing
integers we can use

h(x) = (ax+ b) mod p

where a ∈ [1, . . . , p − 1], b ∈ [0, . . . , p − 1], and p is a prime. This is called a linear congruential
hash function has some nice properties that you will likely learn about in 15-451.

For strings we can simply use a polynomial

h(S) =

 |S|∑
i=1

= sia
i

 mod p

1.1 Open Address Hash Tables

In 15-122 you covered hash tables using separate chaining.

We are going to cover a technique that does not need any linked lists but instead stores every key
directly in array. Open address hashing using so called linear-probing has an important practical advantage
over separate chaining: it causes fewer cache misses since typically all locations that are checked are on
the same cache line.

In our discussion I will assume we have a set of keys we want to store and a hash function h : key →
[1, . . . , n] for some n.

Basic idea of open address is to maintain an array that is some constant factor larger than the number
of keys and store all keys directly in this array. Every cell in the array is either empty or contains a key.

To decide what keys go in what cells we assign every key an ordered sequence of locations in which
the key can be stored. In particular lets assume we have a function h(k, i) that returns the ith location for
key k. We refer to the sequence 〈h(k, 1), h(k, 2), h(k, 3), . . . 〉 is as the probe sequence. We will get back

2 Version (fn x⇒ 3x− 4)1

Parallel and Sequential Data Structures and Algorithms — Lecture 25 15-210 (Fall 2011)

to how the probe sequence might be assigned, but lets first go through how these sequences are used. The
basic idea is when inserting for a key to try each of the locations in order until it finds a slot that is empty,
and then insert the key at that location. Sequentially this would look like

1 fun insert(T, k) =
2 let
3 fun insert′(T, k, i) =
4 case T [h(k, i)] of
5 NONE ⇒ update(i, k, T)
6 | ⇒ insert′(T, k, i+ 1)
7 in
8 insert′(T, k, 1)
9 end

For example:

T = [_ B _ _ E A _ F]

Now if for a key D we had the probe sequence 〈 1, 5, 3, · · · 〉 (0 based) then we would find location 1
and 5 full (with B and E) and place D in location 3 giving:

T = [_ B _ D E A _ F]

Note that the code loop forever if all locations are full. Such an infinite loop can be prevented by
ensuring that h(k, i) tries every location as i is incremented, and also checking when the table is full. Also
note that the code given will insert the same key multiple times over.

To search we then have the following code:

1 fun find(T, k) =
2 let
3 fun find′(T, k, i) =
4 case T [h(k, i)] of
5 NONE ⇒ false
6 | SOME(k′)⇒ if (eq(k, k′)) then true
7 else find′(T, k, i+ 1)
8 in
9 find′(T, k, 1)

10 end

Now if for a key E we have the probe sequence 〈 7, 4, 2, · · · 〉 we would first search location 7 and,
which is full, then location 4 and find E.

Do example of find

3 Version (fn x⇒ 3x− 4)1

Parallel and Sequential Data Structures and Algorithms — Lecture 25 15-210 (Fall 2011)

What about delete
-- ask if simple delete works
-- lazy delete -- replace with a special HOLD VALUE
-- datatype ’a entry = EMPTY | HOLD | FULL of ’a
-- find will skip over a HOLD and move to next probe
-- insert v can replace HOLD in probe sequence with FULL(v)
-- if insert needs to overwrite old value, then must first search to end

What probe sequence can we use.
- linear probing
- quadratic probing
- multiple hash functions

1.2 Parallel Hashing

We assume a function injectCond(IV, S) : (int × α)seq × (αoption)seq → (αoption)seq. It
takes a sequence of index-value pairs 〈 (i1, v1), . . . , (in, vn) 〉 and a target sequence S and conditionally
writes each value vj into location ij of S. In particular it only writes the value if the location is set to
NONE and there is no previous equal index in IV .

Using this we have:

1 fun insert(T,K) =
2 let
3 fun insert′(T,K, i) =
4 if |K| = 0 then T
5 else let
6 val T ′ = injectCond({(h(k, i), k) : k ∈ K} , T)
7 val K ′ = {k ∈ K | T [h(k, i)] 6= k}
8 in
9 insert′(T ′,K ′, i+ 1) end

10 in
11 insert′(T, k, 1)
12 end

Note that if T is implemented using single threaded arrays, then this basically does the same work as
the sequential version adding the elements one by one.

What does it mean for set and table implementations
- search faster (in expectation)
- insert faster (in expectation)
- map, reduce, remain linear
- union/merge slower or faster depending on particular settings

4 Version (fn x⇒ 3x− 4)1

	Hashing
	Open Address Hash Tables
	Parallel Hashing

