Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (Fall 2011)

Lecture 24 — More Leftist Heaps and Sorting Lower Bounds (DRAFT)
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Kanat Tangwongsan — November 16, 2011

Today:
- Finishing Leftist Heaps
- Lower Bounds for Sorting and Merging

1 Recap: Leftist Heaps

Let’s take another look at leftist min heaps. Last time, we saw that leftist heaps give a priority-queue
implementation with fast me 1d operation, which supports combining leftist heaps of sizes n and m in
O(logn + logm) work.

1.1 How the leftist heap got its name?

Invented by Clark Allen Crane in around 1971, a leftist heap is a binary tree—not a binary search tree—
that satisifies the heap property and an additional property known as the leftist property. The heap property
means that in a min heap, the value at any node is at least the values at the two children. Note that with
heap property alone, we can identify the minimum value very quickly in O(1) since the minimum value is
at the root of the tree. But all update operations can take arbitrary long.

This is where the “leftist” idea comes in, with the goal of creating more structure and ensuring that all
update operations we care about can be supported efficiently. The leftist property requires that for each
node in the heap, the “rank” of the left child must be at least the “rank” of the right child. As we defined
last time, the rank of a node z is

rank(z) = # of nodes on the right spine of the subtree rooted at x,

and the rank of a leaf is 0. That is, if L(x) and R(x) are the left and child children of z, then we have:

Leftist Property: For all node z in a leftist heap, rank(L(x)) > rank(R(z)) ‘

At an intuitive level, the leftist property implies that most of entries (mass) will pile up to the left,
making the right spine of such a heap relatively short. We’ll make this idea precise in the following
lemma; following that, we’ll see how we can take advantage of this fact to support fast meld operations.

Lemma 1.1. In a leftist heap with n entries, the rank of the root node is at most logy(n + 1).
Proof. We’ll first prove a claim that relates the number of nodes in a leftist heap to the rank of the heap.
Claim: If a heap has rank 7, it contains at least 2" — 1 entries.

1 Version —1

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (Fall 2011)

To prove this claim, let n(r) denote the number of nodes in the smallest leftist heap with rank 7. It
is not hard to convince ourselves that n(r) is a monotone function; that is, if 7’ > r, then n(r’) > n(r).
With that, we’ll establish a recurrence for n(r). By definition, a rank-0 heap has 0 node. We can establish
a recurrence for n(r) as follows: Let’s look at a the smallest-sized heap whose root node x has rank
r. First, the right child of x must necessarily have rank » — 1—by the definition of rank. Moreover,
by the leftist property, the rank of the left child of x must be at least the rank of the right child of =,
which in turn means that rank(L(x)) > rank(R(z)) = r — 1. Therefore, the size of the tree rooted x is
n(r) =1+ |L(x)| + |R(z)|, so then

n(r) > 1+ n(rank(L(x))) + n(rank(R(zx)))
>1+n(r—1)+n(r—1)=1+2-n(r—1).

Unfolding the recurrence, we get n(r) > 2" — 1, which proves the claim.

To conclude the lemma, we’ll simply apply the claim: Consider a leftist heap with n nodes and
suppose it has rank . By the claim it must be the case that n > n(r), because n(r) is the fewest possible
number of nodes in a heap with rank . But then, by the claim above, we know that n(r) > 2" — 1, so

n>n(r)>2"—1 = 2"<n+1 = r <logy(n+1).

This concludes the proof that the rank of this heap is 7 < logy(n + 1). O

In words, this lemma says leftist heaps have a short right spine, about log n in length. To get good
effiency, we should take advantage of it. Notice that unlike the binary search tree property, the heap
property gives us a lot of freedom in working with left and right child of a node (in particular, they
don’t need to be ordered in any specific way). Since the right spine is short, our meld algorithm should,
when possible, try to work down the right spine. With this rough idea, if the number of steps required
to meld is proportional to the length of the right spine, we have an efficient algorithm that runs in about
O(log n) work. Indeed, this is precisely what the algorithm we saw last time did: the meld algorithm
below effectively traverses the right spines of the heaps a and b. (Note how me 1d is called only with
either (Rg,b) or (a, Rp).)

1 datatype P(Q) = Leaf | Node of (int,key,PQ,PQ)

2 fun rank Leaf =0

3 | rank (Node(r, _,_,_))=

4 fun makeLeftistNode (v,L,R) =

5 if (rank(L) < rank(R))

6 then Node(l + rank(L),v,R, L)

7 else Node(l + rank(R),wv, L, R)

8 fun meld(a,b) =

9 case (a,b) of

10 (_,Leaf) =a

11 | (Leaf, _)=1

12 | (Node(_,kq,La, Ra), Node(_, ky, Ly, Rp)) =

13 case Key.compare(kq,ky) of

14 LESS = makeLeftistNode(kq, Ly, meld(Rg,b))
15 | _ = makeLeftistNode(ky, Ly, meld(a, Ry))

2 Version —1

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (Fall 2011)

Notice the use of the function makeLeft istNode: the role of it is to ensure that the resulting heap
satisfies the leftist property assuming the two input heaps L and R did. The function can also be viewed
as swapping the left and right children if the original ordering violates the leftist property.

Performance of Meld: As we observed already, the me 1 dalgorithm only traverses the right spines
of the two heaps, advancing by one node in one of the heaps. Therefore, on input heaps A and B,
the process takes at most rank(A) + rank(B) steps, which by the lemma we just proved, is at most
logy (Al 4+ 1) + logsy(|B| + 1). Since these steps take constant work, we have the following theorem:

Theorem 1.2. If A and B are leftists heaps then the me 1d(A, B) algorithm runs in O(log(|A|)+log(|B])
work and returns a leftist heap containing the union of A and B.

1.2 Summary of Priority Queues

Already, we have seen a handful of data structures that can be used to implement a priority queue. Let’s
look at the performance guarantees they offer.

Implementation insert findMin deleteMin meld
(Unsorted) Sequence O(n) O(n) O(n) O(m +n)
Sorted Sequence O(n) O(1) O(n) (m +n)
Balanced Trees (e.g. Treaps) O(logn) O(logn) O(logn) O(mlog(l+ 1))
Leftist Heap O(logn) O(1) O(logn) O(logm + log n)

Indeed, a big win for leftist heap is in the super fast me 1d operation—Ilogarithmic as opposed to
roughly linear in other data structures.

2 Lower Bounds

After spending time formulating a concrete problem, we might wonder how hard the problem actually is.
In this course thus far, our focus has been on obtaining efficient algorithms for certain problems. For a
problem P, we try to design efficient algorithms to solve it. The existence of an algorithm gives an upper
bound on the complexity of the problem P. In particular, an algorithm A with work (either expected
or worst-case) O(f(n)) is a constructive proof that P can be solved provided O(f(n)) work. This is
essentially the upper bound part of the question.

In this lecture, we’ll turn the tables, showing that certain problems cannot be solved more efficiently
than a given bound. This is the lower bound part of the question. In general, this is a harder task: To
establish a lower bound, we have to argue that no algorithm, however smart, can possibly do better than
what we claim; it is no longer sufficient to exhibit an algorithm A and analyze its performance.

2.1 Sorting and Merging Lower Bounds

Before we look at lower bounds for sorting and merging, let us review the (upper) bounds we have for
various sorting algorithms we’ve covered:

3 Version —1

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (Fall 2011)

Algorithm Work Span
Quick Sort O(nlogn) O(log®n)
Merge Sort O(nlogn) O(log®n)
Heap Sort O(nlogn) O(nlogn)
Balanced BST Sort O(nlogn) O(log®n)

Notice that in this table, all algorithms have O(n log n) work—and except for heap sort, every algorithm
is very parallel (log” 7 span). Can we sort in less than O(n log n) work? Probably. But we’ll show that in
the comparison-based model, we need €(n log n) comparisons to sort n entries. In the comparison-based
model, we have no domain knowledge about the entries and the only operation we have to determine the
relative order of a pair of entries x and ¥ is a comparision operation, which returns whether x < y. More
precisely, we’ll prove the following theorem:

Theorem 2.1. For a sequence (x1,...,x,) of n distinct entries, finding the permutation T on [n| such
that (1) < Tr2) < -+ < Tn(y) requires, in the worst case, at least 5 5 log(5) queries to the < operator.

Since each comparison takes at least constant work, this implies an 2(n logn) lower bound on the
work required to sort a sequence of length n in the comparison model.

What about merging? Can we merge sorted sequences faster than resorting them? As seen in previous
lectures, we can actually merge two sorted sequences in O(m log(1 4 n/m)) work, where m is the length
of the shorter of the two sequences, and n the length of the longer one. We’ll show, however, that in the
comparision-based model, we cannot hope to do better:

Theorem 2.2. Merging two sorted sequences of lengths m and n (m < n) requires at least
mlogy(1+ 1)

comparison queries in the worst case.

2.2 Decision Trees or The 20 Questions Game

Let’s play game. Suppose I think of an animal but you know for fact it’s one of the following: a fish, a
frog, a fly, a spider, a parrot, or a bison. You want to find out what animal that is by answering the fewest
number of Yes/No questions (you’re only allowed to ask Yes/No questions). What strategy would you
use? Perhaps, you might try the following reasoning process:

Does it live in the
water?

4 Version —1

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (Fall 2011)

Interestingly, this strategy is optimal: there is no way you could have asked any 2 Yes/No questions
to tell apart the 6 possible answers. If we can ask only 2 questions, any strategy that is determistic and
computes the output using only the answers to these Yes/No questions can distinguish between only
22 = 4 possibilities. Thus, using 3 questions is the best one can do.

Determining the minimum number of questions necessary in the worst case in at the crux of many
lower-bound arguments. For starters, we describe a way to represent a deterministic strategy for playing
such a game in the definition below.

Definition 2.3 (Binary Decision Trees). A decision tree is a tree in which

e cach leaf node is an answer (i.e. what the algorithm outputs);

e cach internal node represents a query—some question about the input instance—and has k& children,
corresponding to one of the k possible responses {0, ...,k — 1};

e and the answer is computed as follows: we start from the root and follow a path down to a leaf
where at each node, we choose which child to follow based on the query response.

The cruical observation is the following: if we’re allowed to make at most ¢ queries (i.e., ask at most
@) questions, the number of possible answers we can distinguish is the number of leaves in a binary tree
with depth at most g; this is at most 29. Taking logs on both sides, we have

If there are N possible outcomes, the number of questions needed is at least log, N.

2.3 Warm-up: Guess a Number

As a warm-up question, if you pick a number a between 1 and 22°, how many Yes/No questions do I need
to ask before I can zero in on a? By the calculation above, since there are N = 2% possible outcomes, I
will need at least

logy N = 20

questions in the worst case.

2.4 A Sorting Lower Bound

Let’s turn back to the classical sorting problem. We will prove Theorem [2.1} This follows almost
immediately from our observation about k-ary decision trees. There are n! possible permutations, and to
narrow it down to one permutation which orders this sequence correctly, we’ll need log(n!) queries, so
the number of comparison queries is at least

log(n!) =logn +log(n — 1) +...log1
> logn +log(n — 1) + - - +log(n/2)
> 5 -log(n/2).

5 Version —1

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (Fall 2011)

We can further improve the constants by applying Stirling’s formula instead of this crude approxima-
tion. Remember that Stirling’s formula gives the following approximation:

= (2 Ve e0) > ()

(&

so log,(n!) > nlogy(n/e).

2.5 A Merging Lower Bound

Closely related to the sorting problem is the merging problem: given two sorted sequences A and B, the
merging problem is to combine these sequences into a sorted one. To apply the argument we used for
sorting, we’ll need to count how many possible outcomes the comparsion operation can produce.

Suppose n = |A|, m = |B|, and m < n. We’ll also assume that these sequences are made up of
unique elements. Now observe that we have not made any comparision between elements of A and
B. This means any interleaving sequence A’s and B’s elements is possible. Therefore, the number of
possible merged outcomes is the number of ways to choose n positions out from n 4 m positions to put
A’s elements; this is simply ("*™). Hence, we’ll need, in the worst case, at least log, ("*™) comparison

n
queries to merge these sequences.

The following lemma gives a simple lower bound for ('), so that we can simplify log, (™) to an
expression that we recognize.

Lemma 2.4 (Binomial Lower Bound).

Proof. First, we recall that

(n> n! n(n—l)(n—2)...(n—7’+1)_ﬁ::;'

r) " rln—r) rir=1(r=2)...1 =0

We’ll argue that for 0 < i < min(r,n), % > . Notice that

—1

n—1 n

->— <<= r(n—i)>n(r—i) <= m-ri>nr—ni < (n—r)i >0.
r—i T
Therefore, we have (') > [[/Z5 =% > (n/r)". O

With this lemma, we conclude that the number of comparison queries needed to merge sequences of
lengths m and n (m < n) is at least

logy <n —;m) > mlogy (1+),

proving Theorem

6 Version —1

	Recap: Leftist Heaps
	How the leftist heap got its name?
	Summary of Priority Queues

	Lower Bounds
	Sorting and Merging Lower Bounds
	Decision Trees or The 20 Questions Game
	Warm-up: Guess a Number
	A Sorting Lower Bound
	A Merging Lower Bound

