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Lectured by Guy Blelloch — Nov 15, 2011

Today:
- Independence
- Continue on Augmenting Balanced Trees (see notes from class 21)
- Priority Queues and Leftists Heaps

1 Independence

In problem 5c of Exam 2 we asked whether the O(logn) bounds on the expected size of a subtree in a
treap implied O(log n) bounds with high probability. When discussing the depth of a node in a subtree
we argued that O(log n) expected bounds implied high-probability bounds so the question is whether this
carries over to subtree size. Recall that

A= 1 if j is an ancestor of ¢
“7 | 0 otherwise

where ¢ and j are the locations of keys in the sorted order. Here, we assume a node is an ancestor of itself
(i.e., A;; = 1). Therefore for the depth of a node (as previously shown) we have

n
Di= Y Ai | -1
j=1

where we remove the 1 from the sum since we don’t want to include the node itself, and for the size we

have "
Si=> Aji
j=1

where we include the node itself. We also previously analyzed that Pr [A; ;] = 1/(|j — 4| + 1) so we can
plug this in and get:

E [Dz] = HZ + anlqu —2= O(lOg n)

and

E[Si]==H;+ Hy,—iy1 — 1 = O(logn)
We have already argued that E [D;] = O(logn) implies that with high probability D; is O(logn). To
do this we argued that the terms in the sum Z?:l A; j, the A; ; are independent. This is what allowed us

to apply Chernoff bounds.
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order Az Asn | AsalAon Aus Ao | AiglAig
1,2,3 1 1 1 0 0 -
1,3,2 1 1 1 0 0 -
2,1,3 0 0 - 0 1 0
23,1 0 0 - 0 1 0
3,1,2 0 1 0 1 0 -
3,2,1 0 0 - 1 1 1
Pr(...] | 2/6=1/3|3/6=1/2 2/3 2/6=1/3 | 3/6 =1/2 173

Figure 1: Considering all 6 possible priority orderings of three keys. The first column represents the
ordering: e.g., 1,2,3 indicates that key 1 has the highest priority, key 2 the second highest, and key 3
the lowest. We see that Pr [A3 1] = % while Pr [A31]A21] = % so Ay 1 and A3 1, which are added to
determine the subtree size, are not independent. On the other hand Pr [A; 3] = Pr [A4; 3|41 2] = % SO
A1,2 and Ay 3, which are added to determine node depth, are independent.

The question is whether this is also true for the sum 2?21 Aj ;. By meta-reasoning it cannot be the
case that with high probability subtree sizes are O(logn). This is because in every treap many of the
nodes have subtrees larger than O(logn). In particular the size of the root is n and all but some nodes near
the leaves have size greater than O(logn). This must imply that the terms in the sum are not independent.

To see that they are indeed not independent consider just three keys. We have that S; = 1+ A2 1+ A3 1.
So the question is whether A ; and A3 ; are independent, i.e. is the probability of one affected by the
outcome of the other. The answer is that they are not independent. Informally this is because if 1 wins
against 2 (A1) then it is more likely to win against 2 and 3 (A3 ;). More formally, it is not hard to
verify that Pr [A3 1] = 1 but that Pr [A3|As,1] = 2 (see Figure . Recall that the notation Pr [ X |Y]
means the probability that X is true given that Y is true, and that X and Y are only independent if
Pr [X]| = Pr [X|Y]. Therefore the probability of A3 ; depends on the outcome of A and the two
random variables are not independent.

2 Priority Queues

We have already discussed and used priority queues in a few places in this class. We used them as an
example of an abstract data type. We also used them in priority first graph search to implement Dijkstra’s
algorithm, and the A* variant for shortest paths, and Prim’s algorithm for minimum spanning trees. As
you might have seen in other classes, a priority queue can also be used to implement an O (n log n) work
(time) version of selection sort, often referred to as heapsort. The sort can be implemented as:

fun sort (S) =
let
(# Insert all keys into priority queue x)
val pg = Seg.iter Q.insert Q.empty S
(» remove keys one by one x)
fun sort’ pg =
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case (PQ.deleteMin pqg) of
NONE => S.empyt
| SOME (v,pq’) => Seqg.cons (v,sort’ (pg’))
in
sort’ pg
end

As covered in Exam 1, with a meld operation the insertion into a priority queue can be implemented in
parallel using a reduce instead of iter.

( Insert all keys into priority queue x)
val pg = Seqg.reduce Q.meld Q.empty (Seqg.map Q.singleton S)

However, there is no real way to implement removing the keys in parallel unless we use something
more powerful than a heap.

Priority queues also have applications elsewhere, including

Huffman Codes

Clustering algorithms

Event simulation

Kinetic algorithms

Today we will discuss how to implement a meldable priority queue that supports insert, deleteMin,
and meld all in O(log n) time, where n is the size of the resulting priority queue. The structure is called
a leftist heap. There are several other ways to achieve these bounds, but leftists heaps are particularly
simple and elegant.

Before we get into leftist heaps lets consider some other possibilities and what problems they have.
We could use a sorted array.
We could use an unsorted array.

We could use a BST.

2.1 Leftist Heaps

The goal of leftists heaps is to make the me 1d fast, and in particular run in O(log n) work. As a reminder
a min-heap is a rooted tree such that the key stored at every node is less or equal to the keys of all
its descendants. Similarly a max-heap is one in which the key at a node is greater or equal to all its
descendants. For example the following is a min-heap

3 Version min{—1,0, 1}



Parallel and Sequential Data Structures and Algorithms — Lecture 23 15-210 (Fall 2011)

o 3
/ N\
7 o o 8
/ N\
11 o o 15
/ N\

22 0o o 14
There are two important properties of a min-heap:

1. The minimum is always at the root.

2. The heap only maintains a partial order on the keys (unlike a BST that maintains the keys in a total
order).

The first property allows us to access the minimum quickly, and the second will give us more flexibility
that available in a BST.

Lets consider how to implement the three operations deleteMin, insert and meld on a heap.
To implement deleteMin we can simply remove the root. This would leave:

7 o o 8

/\
11 o o 15

/ \
22 © o 14

This is simply two heaps, which we can use me1d to join. To implement insert((Q,v) we can just
create a singleton node with the value v and then meld it with the heap for Q).

This basically means that the only operation we need to care about is the me1d operation. Lets
consider the following two heaps

4 o o 3
/ \ /\
11 o o 7 8 o o 5
/ \ /
19 o o 23 14 o

If we meld these two min-heaps, which value should be at the root? Well it has to be 3 since it is the
minimum value. So what we can do is select the tree with the smaller root and then recursively meld the
other tree with one of its children. In our case lets meld with the right child. So this would give us:

o 3
/ N\
8 o = meld ( 4 o o 5 )
/ / N\
14 o 11 o o 7
/ N\
19 o o 23

If we apply this again we get
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o 3
/ N\
8 o o 4
/ / N\
14 o 11 o = meld ( o 7 o b)
/ N\

19 o o 23
and one more time gives:

o 3
/ \

14 o 11 o o 5
/ \ \
19 o o0 23 = meld (o 7 empty)

Clearly if we are melding a heap A with an empty heap we can just use A. This leads to the following
code

[y

datatype P(Q) = Leaf | Node of (key, PQ,PQ)

2 fun meld(A,B) =
case (A, B) of
(_,Leaf)= A
| (Leaf, )= B
| (Node(ka,La,Ra),Node(kp,Lp,Rp)) =
case Key.compare(ka,kp) of
LESS = Node(ka, La,meld(Ry, B))
| _ = Node(kp,Lp,meld(A, Rp))

O 0 9 N Lt A W

This code traverses the right spine of each tree (recall that the right spine of a binary tree is the path
from the root to the rightmost node). The problem is that the tree could be very imbalanced and in general
we can’t put any useful bound on the length of these spines—in the worst case all nodes could be on the
right spine. In this case the me 1d function could take ©(|A| + |B|) work. It turns out there is a relatively
easy fix to this problem. The idea is to keep the trees so that the trees are always deeper on the left than
the right. In particular we define the rank of a tree as the length of the right spine. More formally:

1 rank(Leaf)=0
2 rank(Node(_, _,R)=1+ rank(R)

Now we require that for all nodes of a leftist heap (v, L, R)
rank(L) > rank(R)

This is why the tree is called leftist: the rank of all left branches are always at least as great as that of the
right branch. Note that this definition allows the following unbalanced tree.
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o n
This is OK since we will only ever traverse the right spine of a tree, which in this case has length 1.
We can now bound the rank.

Theorem 2.1. For any leftist heap T rank(T) < log|T).

This will be proven in next lecture. To make use of ranks we add a rank field to every node and make
a small change to our code to maintain the leftist property:

1 datatype PQ = Leaf | Node of (int,key, PQ,PQ)

2 fun rank Leaf =0

3 | rank (Node(r, _,_,_))=

4 fun makeLeftistNode (v,L,R) =

5 if (rank(L) < rank(R))

6 then Node(l + rank(L ), R, L)

7 else Node(l+ rank(R),v,L,R)

8 fun meld(A,b) =

9 case (A,B) of

10 (_,Leaf)= A

11 | (Leaf, )= B

12 | (Node(_,ka,La,Ra),Node(_,kp,Lp,Rp)) =

13 case Key.compare(ka,kp) of

14 LESS = makeLeftistNode(ka,La,meld(Ry, B))
15 | _ = makelLeftistNode(kp,Lp,meld(A,Rp))

Note that the only real difference is that we now use makeLeft istNode to create a node and it
makes sure that the rank of the left child is at least as large as the rank of the right child by switching the
two children if necessary. It also maintains the rank value on each node. We now have

Theorem 2.2. If A and B are leftists heaps then the me1d(A, B) algorithm runs in O(log(|A|) +
log(|B|)) work and returns a leftist heap containing the union of A and B.

Proof. The code for me 1d only traverses the right spines of A and B and does constant work at each step.
Therefore since both trees are leftist by Theorem [2.1] the work is bounded by O(log(|A|) + log(|B|))
work. To prove that the result is leftist we note that the only way to create a node in the code is with
makeLeftistNode. This routine guarantees that the rank of the left branch is at least as great as the
rank of the right branch. O
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