
Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Fall 2011)

Lecture 19 — Union, Quick Sort, and Treaps

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — Nov 1, 2011

Today:
- Quick Sort Revisited
- Split and Join
- Treaps

1 Quick Review: Binary Search Trees

For a quick recap, recall that in the last lecture, we were talking about binary search trees. In particular,
we looked at the following:

• Many ways to keep a search tree almost balanced. Such trees include red-black trees, 2-3 trees,
B-trees, AVL trees, Splay trees, Treaps, weight balanced trees, skip trees, among others.

Some of these are binary, some are not. In general, a node with k children will hold k − 1 keys.
But in this course, we will restrict ourselves to binary search trees.

• Using split and join to implement other operations. The split and join operations can
be used to implement most other operations on binary search trees, including: search, insert,
delete, union, intersection and difference.

• An implementation of split and join on unbalanced trees. We claim that the same idea can
also be easily implemented on just about any of the balanced trees.

We then started describing a particular balanced tree, called Treaps (Trees + Heaps). The idea of a
Treap is that we assign to each key a randomized priority and then maintain a tree such that

1. the keys satisfy the binary search tree (BST) property, and

2. the priorities satisfy the heap property (i.e. the priority of every node is greater than the priority of
its children).

Today: before getting back to Treaps, we will discuss two other related topics. The first is the analysis
of the cost of union based on the code we gave last time. Notice that the cost for intersectionand
set difference is the same. The second is an analysis of the quick sort algorithm. It may seem odd to
analyze quick sort in the middle of a lecture on balanced search trees, but as we will see, the analysis of
quick sort is the same as the analysis of Treaps. We basically will reduce the analysis of Treaps to the
analysis of quick sort.

1 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Fall 2011)

2 Cost of Union

In the 15-210 library, union and similar functions (e.g., intersection and difference on sets
and merge, extract and erase on tables) have O(m log(n/m)) work, where m is the length of the
shorter input and n the length of the longer one. At first glance, this may seem like a strange bound, but
we will see how it falls out very naturally from the union code.

To analyze this, first, we note that the work and span of split and join is proportional to the
depth of the input tree(s). This is simply because the code just traverses a path in the tree (or trees for
join). Therefore, if the trees are reasonably balanced and have depth O(log n), then the work and span of
both split and join is O(log n). Indeed, most balanced trees have O(log n) depth. You have already
argued this for red-black trees, and we will soon argue it for Treaps.

Let’s recall the basic structure of union(T1, T2).

• For T1 with key k1 and children L1 and R1 at the root, use k1 to split T2 into L2 and R2.

• Recursively find Lu = union(L1, L2) and Ru = union(R1, R2).

• Now join(Lu, k1, Ru).

Pictorially, the process looks like this:

k1

L1 R1

T1 T2

L2 R2

< k1 > k1 k1

union(L1,L2) union(R1,R2)

Note that each call to union makes one call to split and one to join each which take O(log n)
work, where n is the size of T2. We assume that T1 is the smaller tree with size m. For staters, we’ll make
the following assumptions to ease the analysis:

1. let’s assume that T1 it is perfectly balanced, and

2. each time a key from T1 splits T2, it splits it exactly in half.

Now if we draw the recursion tree1, we obtain the following:
1If we want to write out a work recurrence, it will be W (m,n) = W (m/2, n/2) + Θ(logn)

2 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Fall 2011)

k1 log n

k1 log (n/2) k1 log (n/2)

k1 log (n/4) k1 log (n/4) k1 log (n/4) k1 log (n/4)

k1 log n

k1 2 log (n/2)

k1 4 log (n/4)

Is this tree root or leaf dominated, or evenly sized? And how many levels will it have? It is not hard to
see that this tree is dominated at the leaves. In fact, what’s happening is that when we get to the bottom
level, each leaf in T1 has to split a subtree of T2 of size n/m. This takes O(log(n

m)) work. Since there
are O(m) such splits, the total work at the leaves is O(m log(n

m)). Furthermore, the work going up the
tree decreases geometrically.

To bound this more formally, since T1 has m keys and it is split exactly in half, it will have log2 m
levels, so if we start counting from level 0 at the root, we have that the i-th level has 2i nodes, each costing
Θ(log(n/2i)). Therefore, for example, the bottom level will have m

2 nodes—and the whole bottom level
will cost

k1 ·
m

2
log
(
n/2log m−1

)
= k1 ·

m

2
(log n− log(m/2)) .

Since the tree is dominated at the leaves, the total work will be O(m log(n
m)), as desired. Hence, if the

trees satisfy our assumptions, we have that union runs in O(m log(n
m)).

Of course, in reality, our keys in T1 won’t split subtrees of T2 in half every time. But it turns out this
only helps. We won’t go through a rigorous argument, but it is not difficult to show that the recursion tree
remains leaf dominated. So, once again, it suffices to consider the bottom level of recursion. Since T1 is
balanced, there will be k := m/2 subtrees of T2 that need to be split. Suppose these subtrees have sizes
n1, n2, . . . , nk, where

∑k
i=1 ni = n since the subtrees are a partition of the original tree T2. Therefore,

the total cost of splitting these subtrees is
k∑

i=1

k1 log(ni) ≤
k∑

i=1

k1 log(n/k),

where we use the fact that the logarithm function is concave2 This shows that the total work is O(m log(n
m)).

Still, in actuality, T1 doesn’t have to be perfectly balanced as we assumed. Although this, too, is not
too hard to show, we will leave this case as an exercise. We’ll end by remarking that as described, the span
of union is O(log2 n), but this can be improved to O(log n) by changing the the algorithm slightly.

In summary, this means that union can be implemented in O(m log(n/m)) work and span O(log n).
The same holds for the other similar operations (e.g. intersection).

3 Quick Sort

We now turn to analyzing quick sort. As mentioned earlier, the motivation for analyzing this now is that
this analysis is a nice segue into the Treap analysis. The argument here is essentially the same as the

2Technically, we’re applying a varaint of the so-called Jensen’s inequality.

3 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Fall 2011)

analysis we needed to show that the expected depth of a node in a Treap is O(log n). Of course, being
able to analyze randomized quick sort is very important on its own, and the analysis gives an elegant
example of randomized analysis.

The randomized quick sort algorithm is as follows:

1 fun quickSort(S) =
2 if |S| ≤ 1 then S
3 else let
4 val p = select a random key from S
5 val S1 = 〈 s ∈ S | s < p 〉
6 val S2 = 〈 s ∈ S | s = p 〉
7 val S3 = 〈 s ∈ S | s > p 〉
8 in
9 quickSort(S1) @ S2 @ quickSort(S3)

10 end

For the analysis, we’ll consider a completely equivalent algorithm which will be slightly easier to
analyze. Before the start of the algorithm, we’ll pick for each element a random priority uniformly at
random from the real interval [0, 1]—and in Line 4 in the above algorithm, we’ll instead pick the key
with the highest priority (sound familiar?). Notice that once the priorities are decided, the algorithm is
completely deterministic; you should convince yourself that the two presentations of the algorithm are
fully equivalent (modulo the technical details about how we might store the priority values).

We’re interested in counting how many comparisons quickSort makes. This immediately bounds
the work for the algorithm because this is where the bulk of work is done. That is, if we let

Xn = # of comparisions quickSort makes on input of size n,

our goal is to find an upper bound on E [Xn] for any input sequence S. For this, we’ll consider the final
sorted order3 of the keys T = sort(S). In this terminology, we’ll also denote by pi the priority we chose
for the element Ti.

We’ll derive an expression for Xn by breaking it up into a bunch of random variables and bound them.
Consider two positions i, j ∈ {1, . . . , n} in the sequence T . We use the random indicator variables Aij to
indicate whether we compare the elements Ti and Tj during the algorithm—i.e., the variable will take on
the value 1 if they are compared and 0 otherwise.

Looking closely at the algorithm, we have that if some two elements are compared, one of them has to
be a pivot in that call. So, then, the other element will be part of S1, S2, or S3—but the pivot element will
be part of S2, which we don’t recurse on. This gives the following observation:

Observation 3.1. In the quick sort algorithm, if some two elements are compared in a quickSort call,
they will never be compared again in other call.

Therefore, with these random variables, we can express the total comparsion count Xn as follows:

Xn ≤ 3
n∑

i=1

n∑
j=i+1

Ai,j

3Formally, there’s a permutation π : {1, . . . , n} → {1, . . . , n} between the positions of S and T .

4 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Fall 2011)

This is because our not-so-optimized quick sort compares each element to a pivot 3 times. By linearity
of expectation, we have E [Xn] ≤ 3

∑n
i=1

∑n
j=i+1 E [Ai,j]. Furthermore, since each Ai,j is an indicator

random variable, E [Ai,j] = Pr [Ai,j = 1]. Our task therefore comes down to computing the probability
that Ti and Tj are compared (i.e., Pr [Ai,j = 1]) and working out the sum.

Computing the probability Pr [Ai,j = 1]. The crux of the matter is in descibing the event Ai,j = 1 in
terms of a simple event that we have a handle on. Before we prove any concrete result, let’s take a closer
look at the quick sort algorithm to gather some intutions. Notice that the top level takes as its pivot p the
element with highest priority. Then, it splits the sequence into two parts, one with keys larger than p and
the other with keys smaller than p. For each of these parts, we run quickSort recursively; therefore,
inside it, the algorithm will pick the highest priority element as the pivot, which is then used to split the
sequence further. With this view, the following observation is not hard to see:

Claim 3.2. For i < j, Ti and Tj are compared if and only if pi or pj has the highest priority among
{pi, pi+1, . . . , pj}.

Proof. We’ll show this by contradition. Asssume there is a key Tk, i < k < j with a higher priority
between them. In any collection of keys that include Ti and Tj , Tk will become a pivot before either of
them. Since Tk “sits” between Ti and Tk (i.e., Ti ≤ Tk ≤ Tj) , it will separate Ti and Tj into different
buckets, so they are never compared.

Therefore, for Ti and Tj to be compared, pi or pj has to be bigger than all the priorities inbetween.
Since there are j − i + 1 possible keys inbetween (including both i and j) and each has equal probability
of being the highest, the probability that either i or j is the greatest is 2/(j − i + 1). Therefore,

E [Ai,j] = Pr [Ai,j = 1]

= Pr [pi or pj is the maximum among {pi, . . . , pj}]

=
2

j − i + 1
.

Hence, the expected number of comparisons made is

E [Xn] ≤ 3
n∑

i=1

n∑
j=i+1

E [Ai,j]

= 3
n∑

i=1

n∑
j=i+1

2
j − i + 1

= 3
n∑

i=1

n−i∑
k=1

2
k + 1

≤ 3
n∑

i=1

Hn

= 3nHn ∈ O(n log n)

5 Version 1.0

Parallel and Sequential Data Structures and Algorithms — Lecture 19 15-210 (Fall 2011)

4 Treaps

Let’s go back to Treaps. We claim that the split code given in the last lecture for unbalanced trees doesn’t
need to be modified at all for Treaps.

Exercise 1. Convince yourselves than when doing a split none of the priority orders change (i.e. the code
will never put a larger priority below a smaller priority).

The join code, however, does need to be changed. The new version has to check the priorities of the
two roots and use whichever is greater as the new root. Here is the algorithm:

1 fun join(T1, m, T2) =
2 let
3 fun singleton(k, v) = Node(Leaf,Leaf, k, v)
4 fun join′(T1, T2) =
5 case (T1, T2) of
6 (Leaf,)⇒ T2

7 | (,Leaf)⇒ T1

8 | (Node(L1, R1, k1, v1),Node(L2, R2, k2, v2))⇒
9 if (priority(k1) > priority(k2)) then

10 Node(L1,join′(R1, T2), k1, v1))
11 else
12 Node(join′(T1, L2), R2, k2, v2))
13 in
14 case m of
15 NONE ⇒ join′(T1, T2))
16 | SOME(k, v)⇒ join′(T1,join′(singleton(k, v), T2))
17 end

In the code join′ is a version of join that does not take a middle element. Note that line 9 compares
the priorities of the two roots and then places the key with the larger priority in the new root causing a
recursive call to join on one of the two sides.

The cost of split and join on treaps is proportional to the depth of nodes in the tree. We refer to
the left spine of the tree as the path from the root to the leftmost node in the tree, and the right spine as the
path from the root to the rightmost node in the tree. The join(T1, m, T2) code only traverses the right
spine of T1 or the left spine of T2. The work and span is therefore proportional to the sum of the length of
these spines. Similarly, the split operation only traverses the path from the root down to the node being
split at. The work and span are proportional to this path length. Therefore, if we can show that the depth
of all nodes are at O(log n) then the work and span of join and split are O(log n).

6 Version 1.0

	Quick Review: Binary Search Trees
	Cost of Union
	Quick Sort
	Treaps

